Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-11-21T07:33:17.986Z Has data issue: false hasContentIssue false

How do macrophyte cover and environmental variables influence the microcrustacean community across wet and dry seasons in a tropical marginal lake?

Published online by Cambridge University Press:  12 November 2025

Camila Moreira-Silva*
Affiliation:
Laboratório de Plâncton, Departamento de Hidrobiologia, CCBS, Universidade Federal de São Carlos, São Carlos, Brazil Programa de Pós-graduação em Ciências Biológicas (Zoologia), Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” Botucatu, Brazil
Gilmar Perbiche-Neves
Affiliation:
Laboratório de Plâncton, Departamento de Hidrobiologia, CCBS, Universidade Federal de São Carlos, São Carlos, Brazil
*
Corresponding author: Camila Moreira-Silva; Email: camoreirads@gmail.com

Abstract

We analysed the composition, richness, diversity, abundance, and spatial and seasonal structure of zooplankton microcrustaceans (Cladocera and Copepoda) in a marginal lake of the Paranapanema River to assess how these organisms are affected by the expansion of macrophyte cover during the dry season. The community was monitored through quarterly collections, during the dry and rainy seasons, at nine sampling stations. We expected that (1) microcrustacean richness is higher during the rainy season due to the expansion of aquatic habitats and (2) the presence of macrophytes increases the richness and abundance of microcrustaceans by providing shelter and greater environmental stability. During the study, 31 microcrustacean taxa were recorded, displaying a clear seasonal distribution pattern. A clear seasonal distribution pattern was observed. Cladocera richness was highest during the dry season, which coincided with extensive macrophyte cover. In contrast, Copepoda abundance peaked during the rainy season, when macrophytes were absent. Macrophyte presence influenced abundance and diversity, with distinct taxonomic responses between the groups. The results suggest that seasonality and habitat heterogeneity are key factors in structuring the community in tropical lakes. These findings indicate that macrophytes play an important role in modulating the microcrustacean community, affecting structure, dynamics of abundance, and diversity. The interaction between seasonality and emergent aquatic vegetation is crucial for understanding the dynamics of marginal aquatic systems.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alahuhta, J, Kanninen, A, Hellsten, S, Vuori, K-M, Kuoppala, M and Hämäläinen, H (2013) Environmental and spatial correlates of community composition, richness and status of boreal lake macrophytes. Ecological Indicators 32, 172181. https://doi.org/10.1016/j.ecolind.2013.03.031.CrossRefGoogle Scholar
Alves, J, Pinheiro-Silva, L, Schuster, KF, Matthiensen, A and Petrucio, MM (2022) Environmental conditions are more effective than nutrient availability and spatial processes on explaining microphytoplankton functional structure in a subtropical hypereutrophic reservoir. Austral Ecology 47(2), 291305. https://doi.org/10.1111/aec.13110.CrossRefGoogle Scholar
Arenas-Sánchez, A, López-Heras, I, Nozal, L, Vighi, M and Rico, A (2019) Effects of increased temperature, drought, and an insecticide on freshwater zooplankton communities. Environmental Toxicology and Chemistry 38(2), 396411. https://doi.org/10.1002/etc.4304.CrossRefGoogle Scholar
Astorga, A, Death, R, Death, F, Paavola, R, Chakraborty, M and Muotka, T (2014) Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4(13), 26932702. https://doi.org/10.1002/ece3.1124.CrossRefGoogle ScholarPubMed
Baselga, A, Orme, D, Villeger, S, Bortoli, JD, Leprieur, F, Logez, M, Martinez-Santalla, S, Martin-Devasa, R, Gomez-Rodriguez, C, Crujeiras, RM and Henriques-Silva, R (2023) betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. (Version 1.6). Available at https://cran.r-project.org/web/packages/betapart/index.html (accessed 17 April 2025)Google Scholar
Blettler, M and Bonecker, C (2007) Longitudinal distribution of microcrustacean biomass in three tropical reservoirs (PR, Brazil). Acta Scientiarum Biological Sciences. 29, 297304.Google Scholar
Bottino, F, Cunha-Santino, MB and Bianchini, I (2016) Decomposition of particulate organic carbon from aquatic macrophytes under different nutrient conditions. Aquatic Geochemistry 22(1), 1733. https://doi.org/10.1007/s10498-015-9275-x.CrossRefGoogle Scholar
Cabral, CR, Diniz, LP, da Silva, AJ, Fonseca, G, Carneiro, LS, de Melo Júnior, M and Caliman, A (2020) Zooplankton species distribution, richness and composition across tropical shallow lakes: a large scale assessment by biome, lake origin, and lake habitat. Annales de Limnologie - International Journal of Limnology 56, 25. https://doi.org/10.1051/limn/2020023.CrossRefGoogle Scholar
Cabral, CR, Guariento, RD, Ferreira, FC, Amado, AM, Nobre, RLG, Carneiro, LS and Caliman, A (2019) Are the patterns of zooplankton community structure different between lakes and reservoirs? A local and regional assessment across tropical ecosystems. Aquatic Ecology 53(3), 335346. https://doi.org/10.1007/s10452-019-09693-5.CrossRefGoogle Scholar
Castilho-Noll, MSM, Câmara, CF, Chicone, MF and Shibata, ÉH (2010) Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil. Biota Neotropica 10, 2130. https://doi.org/10.1590/S1676-06032010000100001.CrossRefGoogle Scholar
Chambers, PA, Lacoul, P, Murphy, KJ and Thomaz, SM (2008) Global diversity of aquatic macrophytes in freshwater. In Balian, EV, Lévêque, C, Segers, H and Martens, K (eds), Freshwater Animal Diversity Assessment. Dordrecht: Springer Netherlands, pp. 926. https://doi.org/10.1007/978-1-4020-8259-7_2.CrossRefGoogle Scholar
Choi, J-Y, Jeong, K-S, Kim, S-K, La, G-H, Chang, K-H and Joo, G-J (2014) Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24, 177185. https://doi.org/10.1016/j.ecoinf.2014.09.002.CrossRefGoogle Scholar
Cladocera do Brasil (2025). Available at https://cladoceradobrasil.wordpress.com/ (accessed 17 April 2025).Google Scholar
Climate-Data (2025) Clima de Angatuba (Brasil). Available at https://pt.climate-data.org/america-do-sul/brasil/sao-paulo/angatuba-34873/ (accessed 30 July 2025).Google Scholar
Cortez-Silva, EE, Souza, VF, Santos, GS and Eskinazi-Sant’Anna, EM (2022) Egg production and life history of Alona guttata Sars, 1862 (Cladocera, Chydoridae): implications for colonization of temporary ponds. Brazilian Journal of Biology 82, e237351. https://doi.org/10.1590/1519-6984.237351.CrossRefGoogle Scholar
Crowder, LB, McCollum, EW and Martin, TH (1998) Changing Perspectives on Food Web Interactions in Lake Littoral Zones. In Jeppesen, E, Søndergaard, M, Søndergaard, M, and Christoffersen, K (eds), The Structuring Role of Submerged Macrophytes in Lakes. New York, NY: Springer, pp. 240249. https://doi.org/10.1007/978-1-4612-0695-8_14.CrossRefGoogle Scholar
Damborenea, C, Rogers, DC and Thorp, JH (2020) Thorp and Covich’s Freshwater Invertebrates: Volume 5: Keys to Neotropical and Antarctic Fauna. Academic Press.Google Scholar
Davidson, NL, Kelso, WE and Rutherford, DA (1998) Relationships between environmental variables and the abundance of cladocerans and copepods in the Atchafalaya River Basin. Hydrobiologia 379(1), 175181. https://doi.org/10.1023/A:1003488332055.CrossRefGoogle Scholar
De Meester, L (1996) Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Écoscience 3(4), 385399. https://doi.org/10.1080/11956860.1996.11682356.CrossRefGoogle Scholar
Debastiani-Júnior, JR, Elmoor-Loureiro, LMA and Nogueira, MG (2016) Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda). Brazilian Journal of Biology 76, 93100. https://doi.org/10.1590/1519-6984.13514.CrossRefGoogle ScholarPubMed
Desmet, NJS, Van Belleghem, S, Seuntjens, P, Bouma, TJ, Buis, K and Meire, P (2011) Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Physics and Chemistry of the Earth, Parts A/B/C 36(12), 479489. https://doi.org/10.1016/j.pce.2008.06.002.CrossRefGoogle Scholar
Diniz, AS, Dantas, ÊW and do Nascimento Moura, A (2023) The role of floating and submerged macrophytes in the phytoplankton taxonomic and functional diversity in two tropical reservoirs. Hydrobiologia 850(2), 347363. https://doi.org/10.1007/s10750-022-05073-7.CrossRefGoogle Scholar
Diniz, AS and do Nascimento Moura, A (2022) Top-down and bottom-up effects of fish on a macrophyte-mediated trophic network: a mesocosm approach. Aquatic Ecology 56(4), 11571175. https://doi.org/10.1007/s10452-022-09976-4.CrossRefGoogle Scholar
Dinno, A (2024) dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. (Version 1.3.6). Available at https://cran.r-project.org/web/packages/dunn.test/index.html (accessed 8 April 2025).Google Scholar
Dos Santos, NG, Stephan, LR, Otero, A, Iglesias, C and Castilho-Noll, MSM (2020) How free-floating macrophytes influence interactions between planktivorous fish and zooplankton in tropical environments? An in-lake mesocosm approach. Hydrobiologia 847(5), 13571370. https://doi.org/10.1007/s10750-020-04194-1.CrossRefGoogle Scholar
Ermolaeva, NI and Fetter, GV (2021) Influence of the ionic composition of water on the structure of the zooplankton of the lakes of the tazheran steppe (Western Baikalia). Arid Ecosystems 11(4), 411420. https://doi.org/10.1134/S2079096121040041.CrossRefGoogle Scholar
Ferreira, MT, Albuquerque, A, Aguiar, FC and Catarino, LF (2001) Seasonal and yearly variations of macrophytes in a southern Iberian river. SIL Proceedings, 1922-2010 27(7), 38333837. https://doi.org/10.1080/03680770.1998.11901701.CrossRefGoogle Scholar
Ferreiro, N, Feijoó, C, Giorgi, A and Leggieri, L (2011) Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664(1), 199211. https://doi.org/10.1007/s10750-010-0599-7.CrossRefGoogle Scholar
Gabriel, W and Thomas, B (1988) Vertical migration of zooplankton as an evolutionarily stable strategy. The American Naturalist 132(2), 199216. https://doi.org/10.1086/284845.CrossRefGoogle Scholar
Galir Balkić, A and Ternjej, I (2018) Assessing Cladocera and Copepoda individual disturbance levels in hydrologically dynamic environment. Wetlands Ecology and Management 26(5), 733749. https://doi.org/10.1007/s11273-018-9604-0 CrossRefGoogle Scholar
Gantes, HP and Caro, AS (2001) Environmental heterogeneity and spatial distribution of macrophytes in plain streams. Aquatic Botany 70(3), 225236. https://doi.org/10.1016/S0304-3770(01)00159-0.CrossRefGoogle Scholar
Di Genaro, AC, Sendacz, S, Moraes, MD, Mercante, CT (2015) Dynamics of Cladocera Community in a Tropical Hypereutrophic Environment (Garças Reservoir, São Paulo, Brazil). Journal of Water Resource and Protection 7(5), 379388. https://doi.org/10.4236/jwarp.2015.75030.CrossRefGoogle Scholar
Geraldes, AM and Boavida, M-J (2004) Do littoral macrophytes influence crustacean zooplankton distribution? Limnética 23, 5763.10.23818/limn.23.05CrossRefGoogle Scholar
Havens, KE, Fulton, RS III, Beaver, JR, Samples, EE and Colee, J (2016) Effects of climate variability on cladoceran zooplankton and cyanobacteria in a shallow subtropical lake. Journal of Plankton Research 38(3), 418430. https://doi.org/10.1093/plankt/fbw009.CrossRefGoogle Scholar
Henry, R (2014) Represa de Jurumirim: ecologia, modelagem e aspectos sociais. Holos Editora, Ribeirao Preto.Google Scholar
Ji, G, Havens, KE, Beaver, JR and Fulton, RS (2017) Response of zooplankton to climate variability: droughts create a perfect storm for cladocerans in Shallow Eutrophic Lakes. Water 9(10), 764. https://doi.org/10.3390/w9100764.CrossRefGoogle Scholar
Kassambara, A and Patil, I (2023) ggcorrplot: Visualization of a Correlation Matrix using ‘ggplot2’. (Version 0.1.4.1). Available at https://cran.r-project.org/web/packages/ggcorrplot/index.html (accessed 8 April 2025).Google Scholar
Kiørboe, T, Saiz, E, Tiselius, P and Andersen, KH (2018) Adaptive feeding behavior and functional responses in zooplankton. Limnology and Oceanography 63(1), 308321. https://doi.org/10.1002/lno.10632.CrossRefGoogle Scholar
Kondowe, BN, Masese, FO, Raburu, PO, Singini, W, Sitati, A and Walumona, RJ (2022) Seasonality in environmental conditions drive variation in plankton communities in a Shallow Tropical Lake. Frontiers in Water 4. https://doi.org/10.3389/frwa.2022.883767.CrossRefGoogle Scholar
Lacoul, P and Freedman, B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14(2), 89136. https://doi.org/10.1139/a06-001.CrossRefGoogle Scholar
Louette, G and De Meester, L (2005) High Dispersal Capacity of Cladoceran Zooplankton in Newly Founded Communities. Ecology 86(2), 353359. https://doi.org/10.1890/04-0403.CrossRefGoogle Scholar
Lucena-Moya, P and Duggan, IC (2011) Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45(2), 279287. https://doi.org/10.1007/s10452-011-9353-0.CrossRefGoogle Scholar
Maia-Barbosa, PM, Peixoto, RS and Guimarães, AS (2008) Zooplankton in littoral waters of a tropical lake: a revisited biodiversity. Brazilian Journal of Biology 68, 10691078. https://doi.org/10.1590/S1519-69842008000500014.CrossRefGoogle Scholar
Manolaki, P and Papastergiadou, E (2013) The impact of environmental factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquatic Botany 104, 3446. https://doi.org/10.1016/j.aquabot.2012.09.009.CrossRefGoogle Scholar
Manolaki, P and Papastergiadou, E (2016) Environmental factors influencing macrophytes assemblages in a middle-sized mediterranean stream. River Research and Applications 32(4), 639651. https://doi.org/10.1002/rra.2878.CrossRefGoogle Scholar
Matsumura-Tundisi, T and Galizia Tundisi, J (2003) Calanoida (Copepoda) species composition changes in the reservoirs of São Paulo State (Brazil) in the last twenty years. Hydrobiologia 504(1), 215222. https://doi.org/10.1023/B:HYDR.0000008521.43711.35.CrossRefGoogle Scholar
McKnight, EGW, Jones, CLC, Pearce, NJT and Frost, PC (2023) Environmental Stress and the Morphology of Daphnia pulex . Physiological and Biochemical Zoology 96(6), 438449. https://doi.org/10.1086/728316.CrossRefGoogle ScholarPubMed
Meerhoff, M, Mazzeo, N, Moss, B and Rodríguez-Gallego, L (2003) The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37(4), 377391. https://doi.org/10.1023/B:AECO.0000007041.57843.0b.CrossRefGoogle Scholar
Meerhoff, M and de los Ángeles González-Sagrario, M (2022) Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia 849(17), 37373760. https://doi.org/10.1007/s10750-021-04771-y.Google Scholar
Meng, Z, Yu, X, Xia, S, Zhang, Q, Ma, X and Yu, D (2023) Effects of water depth on the biomass of two dominant submerged macrophyte species in floodplain lakes during flood and dry seasons. Science of The Total Environment 877, 162690. https://doi.org/10.1016/j.scitotenv.2023.162690.CrossRefGoogle ScholarPubMed
Mimouni, E-A, Pinel-Alloul, B, Beisner, BE and Legendre, P (2018) Summer assessment of zooplankton biodiversity and environmental control in urban waterbodies on the Island of Montréal. Ecosphere 9(7), e02277. https://doi.org/10.1002/ecs2.2277.CrossRefGoogle Scholar
Montiel-Martínez, A, Ciros-Pérez, J and Corkidi, G (2015) Littoral zooplankton–water hyacinth interactions: habitat or refuge? Hydrobiologia 755(1), 173182. https://doi.org/10.1007/s10750-015-2231-3.CrossRefGoogle Scholar
Mormul, RP, Esteves, F de A, Farjalla, VF and Bozelli, RL (2015) Space and seasonality effects on the aquatic macrophyte community of temporary Neotropical upland lakes. Aquatic Botany 126, 5459. https://doi.org/10.1016/j.aquabot.2015.06.007.CrossRefGoogle Scholar
Navarro Law, I, Durance, I, Benstead, R, Fryer, ME and Brown, CD (2024) The influence of abiotic factors on the distribution of macrophytes in small water bodies in temperate ecosystems. Limnological Review 24(4), 616636. https://doi.org/10.3390/limnolrev24040036.CrossRefGoogle Scholar
Nogueira, MG (2001) Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia 455(1), 118. https://doi.org/10.1023/A:1011946708757.CrossRefGoogle Scholar
Oksanen, J, Simpson, GL, Blanchet, FG, Kindt, R, Legendre, P, Minchin, PR, O’Hara, RB, Solymos, P, Stevens, MHH, Szoecs, E, Wagner, H, Barbour, M, Bedward, M, Bolker, B, Borcard, D, Carvalho, G, Chirico, M, Caceres, MD, Durand, S, Evangelista, HBA, FitzJohn, R, Friendly, M, Furneaux, B, Hannigan, G, Hill, MO, Lahti, L, McGlinn, D, Ouellette, M-H, Cunha, ER, Smith, T, Stier, A, Braak, CJFT, Weedon, J and Borman, T (2025) vegan: Community Ecology Package. (Version 2.6–10). Available at https://cran.r-project.org/web/packages/vegan/index.html (accessed 17 April 2025).Google Scholar
Okogwu, OI (2010) Seasonal variations of species composition and abundance of zooplankton in Ehoma Lake, a floodplain lake in Nigeria. Revista de Biología Tropical 58(1), 171182.Google Scholar
Perbiche-Neves, G, Boxshall, GA, Previattelli, D, Nogueira, MG and Rocha, CEFD (2015) Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America). ZooKeys 497, 1111. https://doi.org/10.3897/zookeys.497.8091.CrossRefGoogle Scholar
Perbiche-Neves, G, Pomari, J, Serafim-Júnior, M and Nogueira, MG (2021) Cyclopoid copepods as indicators of trophic level in South American reservoirs: a new perspective at species level based on a wide spatial-temporal scale. Ecological Indicators 127, 107744. https://doi.org/10.1016/j.ecolind.2021.107744.CrossRefGoogle Scholar
Perbiche-Neves, G, Saito, VS, Previattelli, D, da Rocha, CEF and Nogueira, MG (2016) Cyclopoid copepods as bioindicators of eutrophication in reservoirs: do patterns hold for large spatial extents? Ecological Indicators 70, 340347. https://doi.org/10.1016/j.ecolind.2016.06.028.CrossRefGoogle Scholar
Perbiche-Neves, G, Saito, VS, Simões, NR, Debastiani-Júnior, JR, Naliato, DA de O and Nogueira, MG (2019) Distinct responses of Copepoda and Cladocera diversity to climatic, environmental, and geographic filters in the La Plata River basin. Hydrobiologia 826(1), 113127. https://doi.org/10.1007/s10750-018-3722-9.CrossRefGoogle Scholar
Pociecha, A, Bielańska-Grajner, I, Kuciel, H and Wojtal, AZ (2018) Is zooplankton an indicator of the water trophic level in dam reservoirs? Oceanological and Hydrobiological Studies 47(3), 288295. https://doi.org/10.1515/ohs-2018-0027.CrossRefGoogle Scholar
R Core Team (2024) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-Project.Org/ . https://cir.nii.ac.jp/crid/1574231874043578752 (accessed 30 July 2025).Google Scholar
Razak, SB and Sharip, Z (2019) Spatio-temporal variation of zooplankton community structure in tropical urban waterbodies along trophic and urban gradients. Ecological Processes 8(1), 44. https://doi.org/10.1186/s13717-019-0196-2.CrossRefGoogle Scholar
Ringelberg, J (2009) Diel Vertical Migration of Zooplankton in Lakes and Oceans: causal explanations and adaptive significances. Springer Science & Business Media.Google Scholar
Rodrigues, LC, Train, S, Roberto, M do C and Pagioro, TA (2002) Seasonal fluctuation of some limnological variables on a floodplain lake (Patos lagoon) of the Upper Paraná River, Mato Grosso do Sul State, Brazil. Brazilian Archives of Biology and Technology 45, 499513. https://doi.org/10.1590/S1516-89132002000600014.CrossRefGoogle Scholar
Rolon, AS and Maltchik, L (2006) Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of Southern Brazil. Hydrobiologia 556(1), 221231. https://doi.org/10.1007/s10750-005-1364-1.CrossRefGoogle Scholar
Sahoo, PK, Guimarães, JTF, Souza-Filho, PWM, Silva, MSD, Silva Júnior, RO, Pessim, G, Moraes, BCD, Pessoa, PFP, Rodrigues, TM, Costa, MFD and Dall’agnol, R (2016) Influence of seasonal variation on the hydro-biogeochemical characteristics of two upland lakes in the Southeastern Amazon, Brazil. Anais Da Academia Brasileira de Ciências 88, 22112227. https://doi.org/10.1590/0001-3765201620160354.CrossRefGoogle ScholarPubMed
Santana, LM, Weithoff, G and Ferragut, C (2017) Seasonal and spatial functional shifts in phytoplankton communities of five tropical reservoirs. Aquatic Ecology 51(4), 531543. https://doi.org/10.1007/s10452-017-9634-3.CrossRefGoogle Scholar
Sarma, SSS, Nandini, S and Gulati, RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542(1), 315333. https://doi.org/10.1007/s10750-004-3247-2.CrossRefGoogle Scholar
Sha, Y, Tesson, SVM and Hansson, L-A (2020) Diverging responses to threats across generations in zooplankton. Ecology 101(11), e03145. https://doi.org/10.1002/ecy.3145.CrossRefGoogle ScholarPubMed
Silva, AMA, Barbosa, JE, Medeiros, PR, Rocha, RM, Lucena-Filho, MA and Silva, DF (2009) Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (Northeast Brazil). Pan-American Journal of Aquatic Sciences 4(2), 226238.Google Scholar
Silva, MV da and Jati, S (2024) Rainfall increases the biomass and drives the taxonomic and morpho-functional groups variability of phytoplankton in a subtropical urban lake. Acta Limnologica Brasiliensia 36, e27. https://doi.org/10.1590/S2179-975X7823.CrossRefGoogle Scholar
Simões, NR, Dias, JD, Meerhoff, M, Lansac-Tôha, FA, Bini, LM and Bonecker, CC (2022) Drivers of zooplankton beta diversity in natural shallow lakes and artificial reservoirs in the Neotropics. Hydrobiologia 849(17), 37053717. https://doi.org/10.1007/s10750-022-04825-9.Google Scholar
Simões, NR, Nunes, AH, Dias, JD, Lansac-Tôha, FA, Velho, LFM and Bonecker, CC (2015) Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758(1), 317. https://doi.org/10.1007/s10750-015-2260-y.CrossRefGoogle Scholar
Sommer, U and Sommer, F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147(2), 183194. https://doi.org/10.1007/s00442-005-0320-0.CrossRefGoogle ScholarPubMed
Sommer, U, Sommer, F, Santer, B, Jamieson, C, Boersma, M, Becker, C and Hansen, T (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters 4(6), 545550. https://doi.org/10.1046/j.1461-0248.2001.00263.x.CrossRefGoogle Scholar
Sousa, FDR and Elmoor-Loureiro, LMA (2019) Identification key for the Brazilian genera and species of Aloninae (Crustacea, Branchiopoda, Anomopoda, Chydoridae). Papéis Avulsos de Zoologia 59, e20195924e20195924. https://doi.org/10.11606/1807-0205/2019.59.24.CrossRefGoogle Scholar
Sousa, FDR, Elmoor-Loureiro, LMA, Mendonça-Galvão, L and Simões, NR (2025) Environmental heterogeneity in wetlands increases alpha and beta diversity of cladocerans (Crustacea, Branchiopoda) at local and regional scale. Acta Limnologica Brasiliensia 37, e101. https://doi.org/10.1590/S2179-975X2624.CrossRefGoogle Scholar
Stephan, L, Castilho-Noll, MS and Henry, R (2017) Comparison among zooplankton communities in hydrologically different lentic ecosystems. Limnetica 36, 99112. https://doi.org/10.23818/limn.36.08.Google Scholar
Stephan, LR, Beisner, BE, Oliveira, SGM and Castilho-Noll, MSM (2019) Influence of Eichhornia crassipes (Mart) Solms on a Tropical Microcrustacean Community Based on Taxonomic and Functional Trait Diversity. Water 11(11), 2423. https://doi.org/10.3390/w11112423.CrossRefGoogle Scholar
Sterner, RW (2009) Role of Zooplankton in Aquatic Ecosystems. In Likens, GE (ed), Encyclopedia of Inland Waters. Oxford: Academic Press, pp. 678688. https://doi.org/10.1016/B978-012370626-3.00153-8.CrossRefGoogle Scholar
Talling, JF and Driver, D (1963) Some problems in the estimation of chlorophyll-a in phytoplankton.Google Scholar
Tang, Y, Horikoshi, M and Li, W (2016) ggfortify: unified interface to visualize statistical results of popular R packages. The R Journal 8(2), 474485.10.32614/RJ-2016-060CrossRefGoogle Scholar
Thomaz, SM (2023) Ecosystem services provided by freshwater macrophytes. Hydrobiologia 850(12), 27572777. https://doi.org/10.1007/s10750-021-04739-y.CrossRefGoogle Scholar
Thomaz, SM and da Cunha, ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22, 218236. https://doi.org/10.4322/actalb.02202011.CrossRefGoogle Scholar
Thomaz, SM, Dibble, ED, Evangelista, LR, Higuti, J and Bini, LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53(2), 358367. https://doi.org/10.1111/j.1365-2427.2007.01898.x.CrossRefGoogle Scholar
Tonkin, JD, Bogan, MT, Bonada, N, Rios-Touma, B and Lytle, DA (2017) Seasonality and predictability shape temporal species diversity. Ecology 98(5), 12011216. https://doi.org/10.1002/ecy.1761.CrossRefGoogle ScholarPubMed
Travaini-Lima, F, Milstein, A and Sipaúba-Tavares, LH (2016) Seasonal differences in plankton community and removal efficiency of nutrients and organic matter in a subtropical constructed Wetland. Wetlands 36(5), 921933. https://doi.org/10.1007/s13157-016-0804-1.CrossRefGoogle Scholar
Vejříková, I, Eloranta, AP, Vejřík, L, Šmejkal, M, Čech, M, Sajdlová, Z, Frouzová, J, Kiljunen, M and Peterka, J (2017) Macrophytes shape trophic niche variation among generalist fishes. PLOS ONE 12(5), e0177114. https://doi.org/10.1371/journal.pone.0177114.CrossRefGoogle ScholarPubMed
Wickham, H (2016) Getting Started with ggplot2. In Wickham, H (ed), ggplot2: Elegant Graphics for Data Analysis. Cham: Springer International Publishing, pp. 1131. https://doi.org/10.1007/978-3-319-24277-4_2.CrossRefGoogle Scholar
Winder, M and Schindler, DE (2004) Climatic effects on the phenology of lake processes. Global Change Biology 10(11), 18441856. https://doi.org/10.1111/j.1365-2486.2004.00849.x.CrossRefGoogle Scholar
Wyngaard, GA, Taylor, BE and Mahoney, DL (1991) Emergence and dynamics of cyclopoid copepods in an unpredictable environment. Freshwater Biology 25(2), 219232. https://doi.org/10.1111/j.1365-2427.1991.tb00487.x.CrossRefGoogle Scholar
Yang, W, Yan, J, Wang, Y, Zhang, B-T and Wang, H (2020) Seasonal variation of aquatic macrophytes and its relationship with environmental factors in Baiyangdian Lake, China. Science of The Total Environment 708, 135112. https://doi.org/10.1016/j.scitotenv.2019.135112.CrossRefGoogle Scholar
Supplementary material: File

Moreira-Silva and Perbiche-Neves supplementary material 1

Moreira-Silva and Perbiche-Neves supplementary material
Download Moreira-Silva and Perbiche-Neves supplementary material 1(File)
File 937.3 KB
Supplementary material: File

Moreira-Silva and Perbiche-Neves supplementary material 2

Moreira-Silva and Perbiche-Neves supplementary material
Download Moreira-Silva and Perbiche-Neves supplementary material 2(File)
File 937.1 KB