Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:01:39.217Z Has data issue: false hasContentIssue false

Functional importance of sacred forest patches in the altered landscape of Palakkad region, Kerala, India

Published online by Cambridge University Press:  15 December 2017

Rajasri Ray*
Affiliation:
Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560012, Karnataka, India
Sreevidya E.A.
Affiliation:
Department of Environmental Science, Bharathiar University, Coimbatore – 641046, Tamil Nadu, India
Ramachandra T.V.
Affiliation:
Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560012, Karnataka, India
*
*Corresponding author. Email: rajasri.ces@gmail.com

Abstract:

The role of sacred forest patches in maintaining biodiversity and offering ecosystem services is well established, though the functional aspects are understated. This study aims to understand the functional diversity of tree reproductive traits of sacred forest patches in an altered landscape. Twenty-five sacred groves in Palakkad region, Kerala, India, were chosen to assess the distribution of five reproductive traits – pollination mechanism, fruit size, seed number, seed size and dispersal mechanism – among the tree populations. The data matrix was analysed for overall trait-state distribution, functional diversity assessment and its relation to environmental parameters and disturbance in the area. A total of 87 woody species was documented with a fairly homogenized distribution of fruit and seed characters, with ≥50% of the recorded trait states in each grove in comparison to control plot. Pollination and dispersal mechanisms are dominated by a single guild. e.g. insects and birds, often generalist in nature. Functional richness had a strong correlation with Shannon's index and disturbance, but evenness and divergence were weakly related with others. Comparative assessment with null model showed no significant deviations from expected results indicating apparent lack of habitat filtering or resource competition among sacred groves. The trait homogenization and overall simplification of the grove biota is perhaps an outcome of rapid land-use change and its consequences on specialist members. This study shows sacred groves are important for maintaining a plethora of functional traits in the altered landscape. However, the prevalence of generalist mediators indicates maintenance of basic ecological functions in the landscape without support for specialist ones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERLY, D. D. & CORNWELL, W. K. 2007. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10:135145.Google Scholar
AGUILAR, R., ASHWORTH, L., GALETTO, L. & AIZEN, M. A. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters 9:968980.Google Scholar
ANAND, M. O., KRISHNASWAMY, J., KUMAR, A. & BALI, A. 2010. Sustaining biodiversity conservation in human-modified landscapes in the Western Ghats: remnant forests matter. Biological Conservation 143:23632374.Google Scholar
ANAND, M. O., MADHUSUDAN, M. D., KUMAR, V. S., CHENGAPPA, S. K., KUSHALAPPA, C. G. & SANKARAN, M. 2014. Spatio-temporal variation in forest cover and biomass across sacred groves in a human-modified landscape of India's Western Ghats. Biological Conservation 178:193199.Google Scholar
ANBARASHAN, M. & PARTHASARATHY, N. 2012. Tree diversity & forest stand structure along disturbance gradients in Indian tropical dry evergreen forest. Ecotropica 18: 119136.Google Scholar
BALAMURALI, G. S., KRISHNA, S. & SOMANATHAN, S. 2015. Senses and signals: evolution of floral signals, pollinator sensory systems and the structure of plant–pollinator interactions. Current Science 108:18521861.Google Scholar
BARRETT, S. C. H. 2010. Understanding plant reproductive diversity. Philosophical Transactions of the Royal Society B 365:99109.Google Scholar
BEHERA, M. K. & PRADHAN, T. R. 2015. Sacred groves of Phulbani forest division of Odisha: socio-cultural elements and plant diversity. Indian Forester 141:670673.Google Scholar
BELLO, F. D., LAVOREL, S., DIAZ, S., HARRINGTON, R., CORNELISSEN, J. H. C., BARDGETT, R. D., BERG, M. P., CIPRIOTTI, P., FELD, C. K., HERING, D., DA SILVA, P. M., POTTS, S. G., SANDIN, L., SOUSA, J. P., STORKEY, J., WARDLE, D. A. & HARRISON, P. A. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity Conservation 19:28732893.Google Scholar
BENAYAS, J. M. R., BULLOCK, J. M. & NEWTON, A. C. 2008. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment 6:329336.Google Scholar
BENJAMINI, Y. & HOCHBERG, Y. 1995. Controlling the false discovery rate: a practical & powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B 57:289300.Google Scholar
BHAGWAT, S., KUSHALAPPA, C. G., WILLIAMS, P. H. & BROWN, N. C. 2005. A landscape approach to biodiversity conservation of sacred groves in the Western Ghats of India. Conservation Biology 19:18531862.Google Scholar
BLICHARSKA, M., MIKUSIŃSKI, G., GODBOLE, A. & SARNAIK, J. 2013. Safeguarding biodiversity and ecosystem services of sacred groves – experiences from northern Western Ghats. International Journal of Biodiversity Science, Ecosystem Services & Management 9:339346.Google Scholar
BODIN, O., TENGO, M., NORMAN, A., LUNDBERG, J. & ELMQVIST, T. 2006. The value of small size: loss of forest patches and ecological thresholds in southern Madagascar. Ecological Applications 16:440451.Google Scholar
BROWN, J.S. 2014. Why are there so many species in the tropics? Journal of Biogeography 41: 822.Google Scholar
BU, W., ZANG, R. & DING, Y. 2014. Functional diversity increases with species diversity along successional gradient in a secondary tropical lowland rainforest. Tropical Ecology 55:393401.Google Scholar
CADOTTE, M. W., CARSCADDEN, K. & MIROTCHNICK, N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48:10791087.Google Scholar
CARDELÚS, C. L., SCULL, P., HAIR, J., GEORGE, M. B., LOWMAN, M. D. & ESHETE, A. W. 2013. A preliminary assessment of Ethiopian sacred grove status at the landscape and ecosystem scales. Diversity 5:320334.Google Scholar
CHANDRASHEKHARA, U. M. 2011. Cultural & conservation values of sacred groves of Kerala, India. International Journal of Ecology and Environmental Sciences 37:143155.Google Scholar
CHANDRASHEKARA, U. M. & SANKAR, S. 1998. Ecology and management of sacred groves in Kerala, India. Forest Ecology and Management 112:165177.Google Scholar
CORNELISSEN, J. H. C., LAVOREL, S., GARNIER, E., DIAZ, S., BUCHMANN, N., GURVICH, D. E., REICH, P. B., TER STEEGE, H., MORGAN, H. D., VAN DER HEIJDEN, M. G. A., PAUSAS, J. G. & POORTER, H. 2003. A handbook of protocols for standardized & easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335380.Google Scholar
CORNWELL, W. K. & ACKERLY, D. D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109126.Google Scholar
DAVIDAR, P., PUYRAVAUD, J. P. & LEIGH, E. G. 2005. Changes in rain forest tree diversity, dominance and rarity across a seasonality gradient in the Western Ghats, India. Journal of Biogeography 32:493501.Google Scholar
DÍAZ, S. & CABIDO, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16:646655.Google Scholar
DIAZ, S., LAVOREL, S., BELLO, F. D., QUETIER, F., GRIGULIS, K. & ROBSON, T. M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences USA 104:2068420689.Google Scholar
DING, Z., FEELEY, K. J., WANG, Y., PAKEMAN, R. J. & DING, P. 2013. Patterns of bird functional diversity on land-bridge island fragments. Journal of Animal Ecology. doi: 10.1111/1365-2656.12046.Google Scholar
DIVYA, K. R. & MANONMANI, K. 2013. Floristic composition and ethnobotanical practices of the sacred groves of Nemmara, Palakkad district, Kerala. International Journal of Pharmaceutical Sciences and Business Management 1:917.Google Scholar
DRAY, S., CHOLER, P., DOLEDEC, S., PERES-NETO, P. R., THUILLER, W., PAVOINE, S. & BRAAK, C. J. F. 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95:1421.Google Scholar
FISCHER, J., LINDENMAYER, D. B. & MANNING, A. D. 2006. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Frontiers in Ecology and the Environment 4:8086.Google Scholar
FLYNN, D. F. B., PROKURAT, M. G., NOGEIRE, T., MOLINARI, N., RICHERS, B. T., LIN, B. B., SIMPSON, N., MAYFIELD, M. M. & CLERCK, F. D. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12:2233.CrossRefGoogle ScholarPubMed
GARDNER, T. A., BARLOW, J., CHAZDON, R., EWERS, R. M., HARVEY, C. A., PERES, C. A. & SODHI, N. S. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters 12:561582.Google Scholar
GARNIER, E. & NAVAS, M. L. 2012. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development 32:365399.Google Scholar
GENTRY, A. H. 1992. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:1928.Google Scholar
GESLIN, B., GAUZENS, B., THEBAULT, E. & DAJOZ, I. 2013. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8 (5): e634 21. doi: 10.1371/journal.pon e.0063421.Google Scholar
GIRAO, L. C., LOPES, A. V., TABARELLI, M. & BRUNA, E. M. 2007. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape. PLoS ONE 2: e908. doi: 10.1371/journal.pone.0000908.Google Scholar
GUNAWARDENE, N. R., DANIELS, A. E. D., GUNATILLEKE, I. A. U. N., GUNATILLEKE, C. V. S., KARUNAKARAN, P. V., NAYAK, K. G., PRASAD, S., PUYRAVAUD, P., RAMESH, B. R., SUBRAMANIAN, K. A. & VASANTHY, G. 2007. A brief overview of the Western Ghats – Sri Lanka biodiversity hotspot. Current Science 93:15671572.Google Scholar
HILL, J. L. & CURRAN, P. J. 2003. Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. Journal of Biogeography 30: 13911403.CrossRefGoogle Scholar
HONNAY, O., JACQUEMYN, H., BOSSUYT, B. & HERMY, M. 2005. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytologist 166:723736.Google Scholar
JAMONEAU, A., SONNIER, G., CHABRERIE, O., KOPP, D. C., SAGUEZ, R., MORON, E. G. & DECOCQ, G. 2011. Drivers of plant species assemblages in forest patches among contrasted dynamic agricultural landscapes. Journal of Ecology 99:11521161.Google Scholar
KOLB, A. & DIEKMANN, M. 2005. Effects of life-history traits on responses of plant species to forest fragmentation. Conservation Biology 19:929938.Google Scholar
LACROIX, G. & ABBADIE, L. 1998. Linking biodiversity and ecosystem function: an introduction. Acta Oecologica 19:189193.Google Scholar
LALIBERTÉ, E. & LEGENDRE, P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299305.Google Scholar
LAMY, T., LISS, K. N., GONZALEZ, A. & BENNETT, E. M. 2016. Landscape structure affects the provision of multiple ecosystem services. Environmental Research Letters 11: 124017.CrossRefGoogle Scholar
LINDSELL, J. A., LEE, D. C., POWELL, V. J. & GEMITA, E. 2015. Availability of large seed-dispersers for restoration of degraded tropical forest. Tropical Conservation Science 8:1727.Google Scholar
LOPES, A. V., GIRÃO, L. C., SANTOS, B. A., PERES, C. A. & TABARELLI, M. 2009. Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biological Conservation 142:11541165.Google Scholar
MAGNAGO, L. F. S., EDWARDS, D. P., EDWARDS, F. A., MAGRACH, A., MARTINS, S. V. & LAURANCE, W. F. 2014. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of Ecology 102:475485.Google Scholar
MASON, N. W. H., MOUILLOT, D., LEE, W. G. & WILSON, J. B. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112118.Google Scholar
MAYFIELD, M. M., ACKERLY, D. D. & DAILY, G. C. 2006. The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. Journal of Ecology 94:522536.Google Scholar
MAYFIELD, M. M., DWYER, J. M., CHALMANDRIER, L., WELLS, J. A., BONSER, S. P., CATTERALL, C. P., DECLERCK, F., DING, Y., FRATERRIGO, J. M., METCALFE, D. J., QUEIROZ, C., VESK, P. A. & MORGAN, J. W. 2013. Differences in forest plant functional trait distributions across landuse and productivity gradients. American Journal of Botany 100:13561368.Google Scholar
MELO, F. P. L., MARTINEZ-SALAS, E., BENITEZ-MALVIDO, J. & CEBALLOS, G. 2010. Forest fragmentation reduces recruitment of large seeded tree species in a semi-deciduous tropical forest of southern Mexico. Journal of Tropical Ecology 26:3543.Google Scholar
MI, X., SWENSON, N. G., JIA, Q., RAO, M., FENG, G., REN, H., BEBBER, D. P. & MA, K. 2016. Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession. Scientific Reports 6:32596. doi: 10.1038/srep32596.Google Scholar
MISHRA, B. P., TRIPATHI, O. P., TRIPATHI, R. S. & PANDEY, H. N. 2004. Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, Northeast India. Biodiversity and Conservation 13:421436.Google Scholar
MOREIRA, E. F., BOSCOLO, D. & VIANA, B. F. 2015. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10: e0123628. doi: 10.1371/journal.pone.0123628.Google Scholar
MOUCHET, M. A., VILLEGER, S., MASON, N. W. H. & MOUILLOT, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867876.Google Scholar
NAIR, V. G. 2006. Impact of Western Ghats Orography on the Weather and Climate over Southern Peninsular India – A Mesoscale Modelling Study. Doctoral thesis, Department of Atmospheric Sciences, Cochin University of Science and Technology, Cochin, India.Google Scholar
NAYAR, T. S., BEGAM, A. R., MOHANAN, N. & RAJKUMAR, G. 2006. Flowering plants of Kerala. Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Thirubhananthapuram, Kerala. 1069 pp.Google Scholar
PAKEMAN, R. J. 2011. Functional diversity indices reveal the impacts of land use intensification on plant community assembly. Journal of Ecology 99:11431151.Google Scholar
PETCHEY, O. L. & GASTON, K. J. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9:741758.Google Scholar
PREMAKUMAR, K. & VINOTHKHANNA, S. 2015. Spatio-temporal analysis of land use in Palakkad district, Kerala. International Journal of Current Research 7:2296422973.Google Scholar
RAJ, P. P. N. & AZEEZ, P. A. 2010. Changing rainfall in the Palakkad plains of South India. Atmósfera 23:7582.Google Scholar
RAJENDRAPRASAD, M. 1995. The floristic, structural and functional analysis of sacred groves of Kerala. Doctoral thesis, University of Kerala, Thiruvananthapuram.Google Scholar
RAMACHANDRAN, V. S. & NAIR, V.J. 1988. Flora of Cannanore. Flora of India, Series 3. Botanical Survey of India, Coimbatore. 599 pp.Google Scholar
RAY, R., CHANDRAN, M. D. S. & RAMACHANDRA, T. V. 2014a. Biodiversity and ecological assessments of Indian sacred groves. Journal of Forestry Research 25:2128.Google Scholar
RAY, R., CHANDRAN, M. D. S. & RAMACHANDRA, T. V. 2014b. Socio-cultural protection of endemic trees in humanized landscape. Biodiversity Conservation 23:19771994.Google Scholar
RODRIGUES, L. F., CINTRA, R., CASTILHO, C. V., PEREIRA, O. D. S. & PIMENTE, T. P. 2014. Influences of forest structure and landscape features on spatial variation in species composition in a palm community in central Amazonia. Journal of Tropical Ecology 30:565578.Google Scholar
RYAN, C. M., PRITCHARD, R., MCNICOL, I., OWEN, M., FISHER, J. A. & LEHMANN, C. 2017. Ecosystem services from southern African woodlands and their future under global change. Philosophical Transactions Royal Society B 371:2015032.Google Scholar
SCARIA, R., KUMAR, S. & VIJAYAN, P. K. 2014. Paddy land conversion as a threat to floristic biodiversity – a study on Karrimpuzha watershed, Kerala state, south India. International Journal of Environmental Sciences 5:123134.Google Scholar
SEIDLER, T. G. & PLOTKIN, J. B. 2006. Seed dispersal and spatial pattern in tropical trees. PLoS Biology 4:e344. doi: 10.1371/journal.pbio.0 0 4 0344.Google Scholar
SREEVIDYA, E. A., PATTABHI, S. & RAY, R. 2016. Conservation in heterogeneous landscape – sacred groves matter. IOSR Journal of Environmental Science, Toxicology and Food Technology 10:5660.Google Scholar
SUBRAMANIAN, K. N., VENKATSUBRAMANIAN, N. & NALLASWAMY, V. K. 1987. Flora of Palghat. Bishen Singh & Mahendra Pal Singh, Dehradun. 149 pp.Google Scholar
SUNDARAPANDIAN, S. M., DAR, J. A., GANDHI, S. D., KANTIPUDI, S. & SUBASHREE, K. 2013. Estimation of biomass and carbon stocks in tropical dry forests in Sivagangai district, Tamil Nadu, India. International Journal of Environmental Science and Engineering Research 4:6676.Google Scholar
SWENSON, N. G. 2012. The functional ecology and diversity of tropical tree assemblages through space and time: from local to regional and from traits to transcriptomes. International Scholarly Research Network ISRN Forestry, Article ID 743617, 16 pages.Google Scholar
TABARELLI, M., SILVA, J. M. C. & GASCON, C. 2004. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodiversity and Conservation 13:14191425.CrossRefGoogle Scholar
TSCHARNTKE, T., SEKERCIOGLU, C. H., DIETSCH, T. V., SODHI, N. S., HOEHN, P. & TYLIANAKIS, J. M. 2008. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944951.Google Scholar
VAJRAVELU, E. 1990. Flora of Palghat district including Silent Valley national park (part I). Flora of India, Series 3. Botanical Survey of India. 646 pp.Google Scholar
VERSCHUUREN, B. & WILD, R. 2012. Sacred natural sites; sources of biocultural diversity. Terralingua, Salt Spring City, Landscape Vol. 3.Google Scholar
VILLEGER, S., MASON, N. W. H. & MOUILLOT, D. 2008. New multidimensional functional diversity indices for a multifaceted frame work in functional ecology. Ecology 89:22902301.Google Scholar
WARRING, B., CARDOSO, F. C. G., MARQUES, M. C. M. & VARASSIN, I. G. 2016. Functional diversity of reproductive traits increases across succession in the Atlantic forest. Rodriguésia 67:321333.Google Scholar
WHEELWRIGHT, N. T. 1985. Fruit-size, gape width, and the diets of fruit-eating birds. Ecology 66:808818.Google Scholar
WHITFELD, T. J. S., LASKY, J. R., DAMAS, K., SOSANIKA, G., MOLEM, K. & MONTGOMERY, R. A. 2014. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46:538548.CrossRefGoogle Scholar
XIAO, Y., LI, X. H., CAO, Y. & DONG, M. 2016. The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecology 217:857868.CrossRefGoogle Scholar
ZITER, C., BENNETT, E. M. & GONZALEZ, A. 2013. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4:85.Google Scholar