Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:36:43.879Z Has data issue: false hasContentIssue false

Forest fragmentation reduces recruitment of large-seeded tree species in a semi-deciduous tropical forest of southern Mexico

Published online by Cambridge University Press:  08 December 2009

Felipe P. L. Melo*
Affiliation:
Instituto de Ecología, Universidad Nacional Autónoma de México. Apartado Postal 70-275, C.P. 04510, Ciudad Universitaria, México DF, México
Esteban Martínez-Salas
Affiliation:
Instituto de Biología, Universidad Nacional Autónoma de México. Apartado Postal 70-367, C.P. 04510, Ciudad Universitaria, México DF, México
Julieta Benítez-Malvido
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México. Antigua Carretera a Pátzcuaro no. 8701, Ex-Hacienda de San José de la Huerta, C.P. 59180, Morelia, Michoacán, México
Gerardo Ceballos
Affiliation:
Instituto de Ecología, Universidad Nacional Autónoma de México. Apartado Postal 70-275, C.P. 04510, Ciudad Universitaria, México DF, México
*
1Corresponding author. Current address: Centro de Pesquisas Ambientais do Nordeste. Av Caxangá, 5775, sala 05, CEP: 50740–000, Recife, Pernambuco, Brasil. Email: fplmelo@cepan.org.br

Abstract:

This study tested whether the reduction in the number of large-bodied seed dispersers is correlated with shifts in the taxonomic and functional (e.g. dispersal mode and seed size) traits of the seeding communities within small fragments of semi-deciduous forest, southern Mexico. In five fragments (2.3–640 ha) and one continuous forest site we sampled tree and seedling species in 40 (20 × 20 m) and 120 (3 × 3 m) plots respectively, and recorded the incidence (presence/absence) of the disperser fauna (three common large-birds and >500-g mammals). Tree and seedling species were categorized according to dispersal mode, seed size and whether they originated from local (i.e. from dropped) or immigrant (i.e. from actively dispersed) seeds. Fragment size negatively correlated with number of species of medium to large vertebrate seed-dispersers and number of seedlings of large-seeded species, but had no influence on functional traits of the adult-tree community. Between 41% and 61% of all seedlings were considered as immigrants and the proportion of immigrant seedlings of large-seeded tree species was negatively correlated with forest size. The results suggest that biased defaunation in small forest fragments may seriously reduce recruitment of large-seeded tree species (>1.4 cm length) dispersed by vertebrates, negatively affecting successional trajectories of small forest fragments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACHARD, F., EVA, H. D., STIBIG, H. J., MAYAUX, P., GALLEGO, J., RICHARDS, T. & MALINGREAU, J. P. 2002. Determination of deforestation rates of the world's humid tropical forests. Science 297:9991002.Google Scholar
ANDRÉN, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355366.CrossRefGoogle Scholar
BENDER, D. J., TISCHENDORF, L. & FAHRIG, L. 2003. Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecology 18:1739.CrossRefGoogle Scholar
BLUNDELL, A. G. & PEART, D. R. 2004. Density-dependent population dynamics of a dominant rain forest canopy tree. Ecology 85:704715.Google Scholar
CHIARELLO, A. G. 1999. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biological Conservation 89:7182.CrossRefGoogle Scholar
CLARKE, K. R. & WARWICK, R. M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth. 172 pp.Google Scholar
CORDEIRO, N. J. & HOWE, H. F. 2001. Low recruitment of trees dispersed by animals in African forest fragments. Conservation Biology 15:17331741.CrossRefGoogle Scholar
CORDEIRO, N. J. & HOWE, H. F. 2003. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proceedings of the National Academy of Sciences USA 100:1405214056.CrossRefGoogle Scholar
CORLETT, R. T. 2007. The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39:292303.Google Scholar
CRAMER, J. M., MESQUITA, R. & WILLIAMSON, G. B. 2007. Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biological Conservation 137:415423.CrossRefGoogle Scholar
CRAWLEY, M. J. 2007. The R book. John Wiley & Sons, Chichester. 949 pp.Google Scholar
CRISTOBAL-AZKARATE, J. & ARROYO-RODRIGUEZ, V. 2007. Diet and activity pattern of howler monkeys (Alouatta palliata) in Los Tuxtlas, Mexico: effects of habitat fragmentation and implications for conservation. American Journal of Primatology 69:10131029.Google Scholar
DIRZO, R. & DOMINGUEZ, C. A. 1995. Plant-herbivore interactions in Mesoamerican tropical dry forests. Pp. 304325 in Bullock, S., Medina, E. & Mooney, H. A. (eds.). Seasonally dry tropical forests. Cambridge University Press, Cambridge.Google Scholar
DIRZO, R., MENDOZA, E. & ORTIZ, P. 2007. Size-related differential seed predation in a heavily defaunated Neotropical rain forest. Biotropica 39:355362.CrossRefGoogle Scholar
DUFRENE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
GENTRY, A. H. 1982. Patterns of neotropical plant species diversity. Evolution Biology 15:184.Google Scholar
GONZALEZ-ZAMORA, A., ARROYO-RODRIGUEZ, V., CHAVEZ, O., SANCHEZ-LOPEZ, S., STONER, K. E. & RIBA-HERNANDEZ, P. 2009. Diet of spider monkeys (Ateles geoffroyi) in Mesoamerica: current knowledge and future directions. American Journal of Primatology 71:820.Google Scholar
GORRESEN, P. M. & WILLIG, M. R. 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. Journal of Mammalogy 85:688697.Google Scholar
GRAFEN, A. & HAILS, R. 2002. Modern statistics for the life sciences. Oxford University Press, Oxford. 351 pp.Google Scholar
HJERPE, J., HEDENAS, H. & ELMQVIST, T. 2001. Tropical rain forest recovery from cyclone damage and fire in Samoa. Biotropica 33:249259.CrossRefGoogle Scholar
HOWE, H. F. & MIRITI, M. N. 2004. When seed dispersal matters. Bioscience 54:651660.Google Scholar
HOWE, H. F. & SMALLWOOD, J. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13:201228.Google Scholar
ISLEBE, G. A., HOOGHIEMSTRA, H., BRENNER, M., CURTIS, J. H. & HODELL, D. A. 1996. A Holocene vegetation history from lowland Guatemala. Holocene 6:265271.Google Scholar
JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forest. American Naturalist 104:501528.Google Scholar
LAURANCE, W. F., LOVEJOY, T. E., VASCONCELOS, H. L., BRUNA, E. M., DIDHAM, R. K., STOUFFER, P. C., GASCON, C., BIERREGAARD, R. O., LAURANCE, S. G. & SAMPAIO, E. 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology 16:605618.Google Scholar
LAURANCE, W. F., NASCIMENTO, H. E. M., LAURANCE, S. G., ANDRADE, A. C., FEARNSIDE, P. M., RIBEIRO, J. E. L. & CAPRETZ, R. L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469482.Google Scholar
MARTINEZ-RAMOS, M. & SOTO-CASTRO, A. 1993. Seed rain and advanced regeneration in a tropical rain-forest. Vegetatio 108;299318.Google Scholar
MELO, F. P. L. 2009. Efectos de la fragmentación sobre la dispersión de semillas y la regeneracion del bosque tropical Centroamericano. PhD thesis, Departamento de Ecología de la Biodiversidad. Univesidad Nacional Autónoma de México, Ciudad de México.Google Scholar
MELO, F. P. L., DIRZO, R. & TABARELLI, M. 2006. Biased seed rain in forest edges: Evidence from the Brazilian Atlantic Forest. Biological Conservation 132:5060.Google Scholar
OLIVEIRA, M. A., GRILLO, A. S. & TABARELLI, M. 2004. Forest edge in the Brazilian Atlantic forest: drastic changes in tree species assemblages. Oryx 38:389394.Google Scholar
PERES, C. A. & MICHALSKI, F. 2006. Synergistic effects of habitat disturbance and hunting in Amazonian forest fragments. Pp. 105126 in Laurance, W. F. & Peres, C. A. (eds.). Emerging threats to tropical forests. Chicago University Press, Chicago.Google Scholar
REDFORD, K. H. 1992. The empty forest. Bioscience 42:412422.CrossRefGoogle Scholar
RODRIGUEZ-CABAL, M. A., AIZEN, M. A. & NOVARO, A. J. 2007. Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America. Biological Conservation 139:195202.Google Scholar
SÁNCHEZ-SÁNCHEZ, O. & ISLEBE, G. A. 2002. Tropical forest communities in southeastern Mexico. Plant Ecology 158:183200.CrossRefGoogle Scholar
SILVA, A. P. & PONTES, A. R. M. 2008. The effect of a mega-fragmentation process on large mammal assemblages in the highly-threatened Pernambuco Endemism Centre, north-eastern Brazil. Biodiversity and Conservation 17:14551464.Google Scholar
SILVA, J. M. C. & TABARELLI, M. 2000. Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:7274.CrossRefGoogle Scholar
STONER, K. E., RIBA-HERNANDEZ, P., VULINEC, K. & LAMBERT, J. E. 2007. The role of mammals in creating and modifying seed shadows in tropical forests and some possible consequences of their elimination. Biotropica 39:316327.Google Scholar
TABARELLI, M., DA SILVA, M. J. C. & GASCON, C. 2004. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodiversity and Conservation 13:14191425.Google Scholar
TABARELLI, M., LOPES, A. V. & PERES, C. A. 2008. Edge-effects drive forest fragments towards an early-successional system. Biotropica 40:657661.Google Scholar
TERBORGH, J., LOPEZ, L., NUNEZ, P., RAO, M., SHAHABUDDIN, G., ORIHUELA, G., RIVEROS, M., ASCANIO, R., ADLER, G. H., LAMBERT, T. D. & BALBAS, L. 2001. Ecological meltdown in predator-free forest fragments. Science 294:19231926.Google Scholar
TERBORGH, J., NUNEZ-ITURRI, G., PITMAN, N. C. A., VALVERDE, F. H. C., ALVAREZ, P., SWAMY, V., PRINGLE, E. G. & PAINE, C. E. T. 2008. Tree recruitment in an empty forest. Ecology 89:17571768.Google Scholar
WEBB, C. O. & PEART, D. R. 2001. High seed dispersal rates in faunally intact tropical rain forest: theoretical and conservation implications. Ecology Letters 4:491499.Google Scholar
WRIGHT, S. J., HERNANDEZ, A. & CONDIT, R. 2007. The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 39:363371.Google Scholar