Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:43:19.221Z Has data issue: false hasContentIssue false

Evidence for tolerance of parasitism in a tropical cavity-nesting bird, planalto woodcreeper (Dendrocolaptes platyrostris), in northern Argentina

Published online by Cambridge University Press:  11 October 2010

Andrea R. Norris*
Affiliation:
Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
Kristina L. Cockle
Affiliation:
Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4 Proyecto Selva de Pino Paraná, Fundación de Historia Natural Félix de Azara, Departamento de Ciencias Naturales y Antropología, CEBBAD – Universidad Maimónides. Valentín Virasoro 732, C1405BDB Buenos Aires, Argentina
Kathy Martin
Affiliation:
Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4 Science & Technology Branch, Environment Canada, 5421 Robertson Road, RR1, Delta, BC, V4K 3N2, Canada
*
1Corresponding author. Email: arnorris@interchange.ubc.ca

Abstract:

Avian hosts may either resist the negative effects of nestling ectoparasites by minimizing the number of parasites, or tolerate parasitism by increasing their fecundity via the reproductive compensation hypothesis. Little is known about the interactions between ectoparasites and their avian hosts in the tropics. We (1) examined nestling development rates, and tested whether (2) parasitism by a subcutaneous ectoparasitic botfly (Philornis sp.) had negative effects on the condition of nestlings, and (3) these negative effects were minimized in larger broods in a tropical cavity-nesting bird, the planalto woodcreeper (Dendrocolaptes platyrostris), in primary and secondary Atlantic forests in the northern province of Misiones, Argentina. Nestling mass and ectoparasite load per nestling reached maxima when nestlings (n = 50) were between 10 and 14 d old. General linear mixed models predicted that mass at fledging declined with increasing nestling parasite load, suggesting that botflies had a negative influence on fledging condition. Parasite load per nestling declined with increasing brood size indicating that woodcreepers that increase their reproductive output minimize the negative effects of parasitism. Overall we found evidence to support the tolerance via reproductive compensation hypothesis. Future tests of the reproductive compensation hypothesis may help determine the underlying mechanism of the observed negative correlation between parasite load of nestlings and brood size.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARENDT, W. J. 1985. Philornis ectoparasitism of pearly-eyed trashers. II. Effects on adults and reproduction. Auk 102;281292.CrossRefGoogle Scholar
BODRATI, A., COCKLE, K., SEGOVIA, J. M., ROESLER, I., ARETA, J. I. & JORDAN, E. in press. La avifauna del Parque Provincial Cruce Caballero, Provincia de Misiones, Argentina. Cotinga.Google Scholar
BROWN, C. R. & BROWN, M. B. 1986. Ectoparasitism as a cost of coloniality in Cliff Swallows (Hirundo pyrrhonota). Ecology 67:12061218.CrossRefGoogle Scholar
CABRERA, A. L. 1976. Enciclopedia Argentina de agricultura y jardinería. Tomo II. Fascículo I. Regiones fitogeográficas Argentinas. (Second edition). Editorial Acme, S. A. C. I., Aires, Buenos. 73 pp.Google Scholar
COCKLE, K. L. & BODRATI, A. A. 2009. Nesting of the planalto woodcreeper (Dendrocolaptes platyrostris). The Wilson Journal of Ornithology 121:789795.CrossRefGoogle Scholar
DI IORIO, O. & TURIENZO, P. 2009. Insects found in birds’ nests from the Neotropical Region (except Argentina) and immigrant species of Neotropical origin in the Nearctic Region. Zootaxa 2187:1144.CrossRefGoogle Scholar
DODGE, H. R. 1955. New muscid flies from Florida and the West Indies (Diptera: Muscidae). Florida Entomologist 38:147151.CrossRefGoogle Scholar
DODGE, H. R. 1971. Revisional studies of flies of the genus Philornis Meinert (Diptera, Muscidae). Studia Entomologica 14;458459.Google Scholar
DUDANIEC, R. Y. & KLEINDORFER, S. 2006. Effects of the parasitic flies of the genus Philornis (Diptera: Muscidae) on birds. Emu 106;1320.CrossRefGoogle Scholar
DUDANIEC, R. Y., FESSL, B. & KLEINDORFER, S. 2007. Interannual and interspecific variation in intensity of the parasitic fly, Philornis downsi, in Darwin's finches. Biological Conservation 139:325332.CrossRefGoogle Scholar
DUDANIEC, R. Y., GARDNER, M. G. & KLEINDORFER, S. 2010. Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galapagos birds. Biological Invasions 12:581592.CrossRefGoogle Scholar
FESSL, B. & TEBBICH, S. 2002. Philornis downsi – a recently discovered parasite on the Galápagos archipelago – a threat for Darwin′s finches? Ibis 144;445451.CrossRefGoogle Scholar
FESSL, B., SINCLAIR, B. J. & KLEINDORFER, S. 2006. The life-cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin′s finches and its impacts on nestling survival. Parasitology 133;739747.CrossRefGoogle ScholarPubMed
GOWATY, P. A. 2008. Reproductive compensation. Journal of Evolutionary Biology 21:11891200.CrossRefGoogle ScholarPubMed
HEEB, P., WERNER, I., KÖLLIKER, M. & RICHNER, H. 1998. Benefits of induced host responses against an ectoparasite. Proceedings of the Royal Society of London B 265:5156.CrossRefGoogle Scholar
IHAKA, R. & GENTLEMAN, R. 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5:299314.Google Scholar
KRÜGER, O. 2007. Cuckoos, cowbirds and hosts: adaptations, trade-offs and constraints. Philosophical Transactions of the Royal Society B: Biological Sciences 362:18731886.CrossRefGoogle ScholarPubMed
LINDÉN, M., GUSTAFSSON, L. & PÄRT, T. 1992. Selection on fledgling mass in the collared flycatcher and the great tit. Ecology 73:336343.CrossRefGoogle Scholar
MARANTZ, C. A., ALEIXO, A.BEVIER, L. R. & PATTEN, M. A. 2003. Family Dendrocolaptidae (Woodcreepers). Pp. 358447 in del Hoyo, J., Elliott, A. & Christie, D. (eds.). Handbook of the birds of the world, Volume 8. Broadbills to tapaculos. Lynx Edicions, Barcelona. 845 pp.Google Scholar
MARSHALL, A. G. 1981. The ecology of ectoparasitic insects. Academic Press, London. 459 pp.Google Scholar
MØLLER, A. P. 1998. Evidence of larger impact of parasites on hosts in the tropics: Investment in immune function within and outside the tropics. Oikos 82:265270.CrossRefGoogle Scholar
MØLLER, A. P. & ERRITZØE, J. 1996. Parasite virulence and host immune defense: host immune response is related to nest reuse in birds. Evolution 50:20662072.CrossRefGoogle ScholarPubMed
MØLLER, A. P., ALLANDER, K. & DUFVA, R. 1990. Fitness effects of parasites on passerine birds: a review. Pp. 269280 in Blondel, J., Gosler, A., Lebreton, J. D. & McCleery, R. H. (eds.). Population biology of passerine birds: an integrated approach. Springer-Verlag, Berlin. 496 pp.CrossRefGoogle Scholar
MØLLER, A. P., ARRIERO, E., LOBATO, E. & MERINO, S. 2009. A meta-analysis of parasite virulence in nestling birds. Biological Reviews 84:567588.CrossRefGoogle ScholarPubMed
O'BRIEN, E. L. & DAWSON, R. D. 2005. Perceived risk of ectoparasitism reduces primary reproductive investment in tree swallows Tachycineta bicolor. Journal of Avian Biology 36:269275.CrossRefGoogle Scholar
O'BRIEN, E. L. & DAWSON, R. D. 2008. Parasite-mediated growth patterns and nutritional constraints in a cavity-nesting bird. Journal of Animal Ecology 77:127134.CrossRefGoogle Scholar
PINHEIRO, J. C. & BATES, D. M. 2000. Mixed-effects models in S and S-Plus. Springer-Verlag, New York. 528 pp.CrossRefGoogle Scholar
RÅBERG, L., SIM, D. & READ, A. F. 2007. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812814.CrossRefGoogle ScholarPubMed
RICHNER, H. & HEEB, P. 1995. Are clutch and brood size patterns in birds shaped by ectoparasites? Oikos 73:435441.CrossRefGoogle Scholar
SAINO, N., CALZA, S., NINNI, P. & MØLLER, A. P. 1999. Barn swallows trade survival against offspring condition and immunocompetence. Journal of Animal Ecology 68:9991009.CrossRefGoogle Scholar
SIMMS, E. L. & TRIPLETT, J. 1994. Costs and benefits of plant-responses to disease: resistance and tolerance. Evolution 48:19731985.CrossRefGoogle ScholarPubMed
SKUTCH, A. F. 1969. Life histories of Central American birds III: families Cotingidae, Pipridae, Formicariidae, Furnariidae, Dendrocolaptidae, and Picidae. Pacific Coast Avifauna 35:1580.Google Scholar
SKUTCH, A. F. 1981. New studies of tropical American birds. Publications of the Nuttall Ornithological Club 19:1281.Google Scholar
SVENSSON, E. I. & RÅBERG, L. 2010. Resistance and tolerance in animal enemy-victim coevolution. Trends in Ecology and Evolution 25:267274.CrossRefGoogle ScholarPubMed
TRIPET, F. & RICHNER, H. 1997. Host responses to ectoparasites: food compensation by parent blue tits. Oikos 78:557561.CrossRefGoogle Scholar
WESOŁOWSKI, T. 2001. Host–parasite interactions in natural holes: marsh tits (Parus palustris) and blowflies (Protocalliphora falcozi). Journal of Zoology, London 255:495503.CrossRefGoogle Scholar
WOOLHOUSE, M. E. J., WEBSTER, J. P., DOMINGO, E., CHARLESWORTH, B. & LEVIN, B. R. 2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics 32:569577.CrossRefGoogle ScholarPubMed
YOUNG, B. E. 1993. Effects of the parasitic botfly Philornis carinatus on nestling house wrens, Troglodytes aedon, in Costa Rica. Oecologia 93: 256262.CrossRefGoogle ScholarPubMed