Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T20:55:38.833Z Has data issue: false hasContentIssue false

Effect of host-bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad

Published online by Cambridge University Press:  11 October 2010

Susana Valencia-Díaz
Affiliation:
Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Carretera Yautepec-Jojutla Km 8.5, Col. San Isidro, C. P. 62273, Yautepec, Morelos, México
Alejandro Flores-Palacios*
Affiliation:
Centro de Investigación en Biodiversidad y Conservación (CIByC), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, México
Verónica Rodríguez-López
Affiliation:
Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, México
Elsa Ventura-Zapata
Affiliation:
Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Carretera Yautepec-Jojutla Km 8.5, Col. San Isidro, C. P. 62273, Yautepec, Morelos, México
Antonio R. Jiménez-Aparicio
Affiliation:
Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Carretera Yautepec-Jojutla Km 8.5, Col. San Isidro, C. P. 62273, Yautepec, Morelos, México
*
1Corresponding author. Email: alejandro.florez@uaem.mx

Abstract:

Tree species are potential hosts for epiphytes; however in some forests epiphytes have a biased distribution among hosts. In a tropical dry forest of Mexico, previous research showed that there are trees with few epiphytes. It is possible that the bark of these hosts contain allelochemicals that influence epiphyte seed germination. The aims of this study were (1) to determine whether hosts with low epiphyte abundance (Ipomoea murucoides, I. pauciflora and Lysiloma acapulcense) would inhibit seed germination of Tillandsia recurvata through aqueous and organic bark extracts, (2) to determine whether germination of T. recurvata would differ among the hosts with low epiphyte abundance and a host with high epiphyte abundance (Bursera copallifera) and (3) to relate the chemical composition of organic bark extracts with inhibition of T. recurvata seed germination. Hexanic and dichloromethanic extracts were partially chemically characterized. Total phenolics and flavonoids concentrations of methanolic extracts were analysed. Aqueous and organic bark extracts from hosts with few epiphytes inhibited T. recurvata seed germination. Aqueous and dichloromethanic extracts of B. copallifera inhibited slightly the germination of T. recurvata. There was a positive correlation between concentration of flavonoids and inhibition of seed germination. Results suggest that a combination of compounds may be responsible for affecting the germination of T. recurvata. This study demonstrates the chemical effect of aqueous and organic bark extracts from hosts on germination of an epiphytic bromeliad.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALOTHMAN, M., BHAT, R. & KARIM, A. A. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry 115:785788.CrossRefGoogle Scholar
ANAYA, A. L. & CRUZ-ORTEGA, R. 2001. La alelopatía: algunos estudios de caso y posibles aplicaciones. Pp. 3367 in Anaya, A. L., Espinosa-García, F. J. & Cruz-Ortega, R. (eds.). Relaciones químicas entre organismos: aspectos básicos y perspectivas de su aplicación. Plaza y Valdes Editores, Mexico. 733 pp.Google Scholar
ANAYA, A. L., CALERA, M. R., MATA, R. & PEREDA-MIRANDA, R. 1990. Alleopathic potential of compounds isolated from Ipomoea tricolor Cav. (Convolvulaceae). Journal of Chemical Ecology 16:161168.Google Scholar
ANAYA, A. L., SABOURIN, D. J., HERNÁNDEZ-BAUTISTA, B. E. & MÉNDEZ, I. 1995. Allelopathic potential of Ipomoea tricolor (Convolvulaceae) in a green house experiment. Journal of Chemical Ecology 21:10851102.CrossRefGoogle Scholar
ANDERSEN, M. Ø. & MARKHAM, K. R. 2006. Flavonoids. Chemistry, biochemistry and applications. CRC Press, Boca Raton. 1256 pp.Google Scholar
ARDITTI, J. & ERNST, R. 1993. Micropropagation of orchids. John Wiley & Sons, New York. 682 pp.Google Scholar
ARDITTI, J. & GHANI, A. K. A. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145:367421.CrossRefGoogle ScholarPubMed
BECERRA, J. X., VENEABLE, D. L., EVANS, P. H. & BOWERS, W. S. 2001. Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. American Zoologist 4:865877.Google Scholar
BENZING, D. H. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 376 pp.Google Scholar
BHAT, S. V., NAGASAMPAGI, B. A. & SIVAKUMAR, M. 2005. Chemistry of natural products. Narosa, New Delhi. 840 pp.Google Scholar
CAAMAL-MALDONADO, J. A., JIMÉNEZ-OSORNIO, J., TORRES-BARRAGÁN, A. & ANAYA, A. L. 2001. The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agronomy Journal 93:2736.CrossRefGoogle Scholar
CALLAWAY, R. M. & WALKER, L. R. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:19581965.Google Scholar
CALLAWAY, R. M., REINHART, K. O., TUCKER, S. C. & PENNINGS, S. C. 2001. Effects of epiphytic lichens on host preference of the vascular epiphyte Tillandsia usneoides. Oikos 94:433441.Google Scholar
CALLAWAY, R. M., RIDENOUR, W. M., LABOSKI, T., WEIR, T. & VIVANCO, J. M. 2005. Natural selection for resistance to the allelopathic effects of invasive plants. Journal of Ecology 93:576583.Google Scholar
CHAVES, N. & ESCUDERO, J. C. 1997. Allelopathic effect of Cistus ladanifer on seed germination. Functional Ecology 11:432440.Google Scholar
CLAVER, F. K., ALANIZ, J. R. & CALDÍZ, D. O. 1983. Tillandsia spp.: epiphytic weeds of trees and bushes. Forest Ecology and Management 6:367372.Google Scholar
DEWANTO, V., WU, X., ADOM, K. & LUI, R. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50:30103014.CrossRefGoogle ScholarPubMed
DJURDJEVIC, L. A., DINIC, A. & PAVLOVIC, P. 2004. Allelopathic potential of Allium ursinum L. Biochemical Systematics and Ecology 32:533544.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2004. Effect of isolation on the structure and nutrient budget of oak epiphyte communities. Plant Ecology 173:259269.Google Scholar
FLORES-PALACIOS, A. & ORTÍZ-PULIDO, R. 2005. Epiphyte orchid establishment on termite carton trails. Biotropica 37:457461.Google Scholar
FREI, J. K. & DODSON, C. H. 1972. The chemical effect of certain bark substrates on the germination and early growth of epiphytic orchids. Bulletin of the Torrey Botanical Club 99: 301307.Google Scholar
GARCÍA-SUÁREZ, M. D., RICO-GRAY, V., MOLINA-ACEVES, N. & SERRANO, H. 2006. In-vitro germination and clonal propagation of endemic Tillandsia califanii Rauch (Bromeliaceae) from Mexico. Selbyana 27:5459.Google Scholar
HERNÁNDEZ-TERRONES, M. G., MORAIS, S. A. L., FERRERIRA, S., SANTOS, D. Q., NASCIMENTO, E. A. & CHANG, R. 2007. Estudo fitoquímico e alelopático do extracto de caule de sucupira-branca (Pterodon emarginatus). Planta Daninha, Viçosa-MG 25:755762.Google Scholar
IZHAKI, I. 2002. Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytologist 155:205217.Google Scholar
JOHNSON, R. A. & WICHERN, D. W. 2002. Applied multivariate statistical analysis. Prentice Hall, New Jersey. 767 pp.Google Scholar
KEFELI, V. I. 1978. Natural plant growth inhibitors and phytohormones. Dr. W. Junk Publishers, The Hague. 296 pp.Google Scholar
LÓPEZ-VILLALOBOS, A., FLORES-PALACIOS, A. & ORTÍZ-PULIDO, R. 2008. The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecology 198:265274.Google Scholar
MACÍAS, F. A. & GALINDO, J. C. G. 2001. Terpenoides alelopáticos: estructuras, actividad y aplicaciones. Pp. 3367 in Anaya, A. L., Espinosa-García, F. J. & Cruz-Ortega, R. (eds.). Relaciones químicas entre organismos: Aspectos básicos y perspectivas de su aplicación. Plaza y Valdes Editores, Mexico.Google Scholar
MACIAS-RUBALCAVA, M. L., HERNÁNDEZ-BAUTISTA, B. E. & ANAYA, A. L. 2008. Production of allelopathic glycosidic resins in seeds and early development stages of Ipomoea tricolor L. (Convolvulaceae). Allelopathy Journal 21:107118.Google Scholar
MEHLTRETER, K., FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2005. Host preference of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology 21:651660.Google Scholar
MONDRAGON, D., DURAN, R., RAMIREZ, I. & VALVERDE, T. 2004. Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatan Peninsula, Mexico. Journal of Tropical Ecology 20:189200.CrossRefGoogle Scholar
PAVIA, D. L., LAMPMAN, G. M. & KRIZ, G. S. 2005. Introduction to organic laboratory techniques. A small scale approach. Thomson Bookscole. Belmont. 1028 pp.Google Scholar
PEREDA-MIRANDA, R. & MATA, R. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. Journal of Natural Products 56:571582.Google Scholar
PERRY, L. G., THELEN, G. C., RIDENOUR, W. M., WEIR, T. L., CALLAWAY, R. M., PASCHKE, M. W. & VIVANCO, J. 2005. Dual role for an allelochemical: (±)-catechin from Centaurea maculosa root exudates regulates conspecific seedling establishment. Journal of Ecology 93:11261135.CrossRefGoogle Scholar
QASEM, R. J. 2006. Parasitic weeds and allelopathy: from the hypothesis to the proof. Pp. 565620 in Reigosa, M. J., Pedrol, N. & González, L. (eds.). Allelopathy: a physiological process with ecological implications. Springer, Dordrecht.Google Scholar
REIGOSA, M. J., SOUTO, X. C. & GONZÁLEZ, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation 28:8388.Google Scholar
RICE, E. L. 1984. Allelopathy. Academic Press, New York. 422 pp.Google Scholar
RIVERO-CRUZ, J. F. 1996. Alquicatecoles de Metopium brownei (Jacq.) Urban Anacardiaceae. Masters Thesis. Facultad de Química, UNAM. Mexico.Google Scholar
ROSENBLUETH, M., MARTÍNEZ, J. & MARTÍNEZ, E. 2001. Ecología química en la rizósfera y en la simbiósis de las plantas. Pp. 3367 in Anaya, A. L., Espinosa-García, F. J. & Cruz-Ortega, R. (eds.). Relaciones químicas entre organismos: aspectos básicos y perspectivas de su aplicación. Plaza y Valdes Editores, Mexico.Google Scholar
RZEDOWSKI, J. 1978. La vegetación de México. Limusa, Mexico.Google Scholar
SILVERTOWN, J. W. & LOVETT-DOUST, J. 1993. Introduction to plant population biology. Blackwell Scientific Publications, Oxford. 210 pp.Google Scholar
VERGARA-TORRES, C. A., PACHECO-ÁLVAREZ, , , M. C. & FLORES-PALACIOS, A. 2010. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. Journal of Tropical Ecology 26:XXXXXX.CrossRefGoogle Scholar
WARDLE, D. A., NILSSON, M. C., GALLET, C. & ZACKRISSON, O. 1998. An ecosystem-level perspective of allelopathy. Biological Reviews 73:305319.Google Scholar
WILLIAMSON, E. M., OKPAKO, D. T. & EVANS, F. J. 1996. Selection, preparation and pharmacological evaluation of plant material. John Wiley & Sons Ltd., Chichester. 228 pp.Google Scholar
WINKLER, M., HÜLBERT, K. & HIETZ, P. 2007. Population dynamics of epiphytic bromeliads: life strategies and the role of host branches. Basic and Applied Ecology 8:186196.Google Scholar
YANG, J., MARTINSON, T. E. & LIU, R. H. 2009. Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry 116:332339.Google Scholar
ZAR, J. H. 2010. Biostatistical analysis. Prentice-Hall, New Jersey. 944 pp.Google Scholar
ZOTZ, G., LAUBE, S. & SCHMIDT, G. 2005. Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography 28:806814.CrossRefGoogle Scholar