Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T21:41:17.808Z Has data issue: false hasContentIssue false

Colonization of forest clearings and tree-fall gaps in lowland rain forests of Colombia by hemiepiphytic aroids: experimental and transect studies

Published online by Cambridge University Press:  27 February 2013

Ana María Benavides*
Affiliation:
Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
Jan H. D. Wolf
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, the Netherlands
Joost F. Duivenvoorden
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, the Netherlands
*
Corresponding author. Email: anamaria.benavides@gmail.com

Abstract:

The contribution of vegetative recruitment by non-tree species to the regeneration of tropical forests in man-made clearings or tree-fall gaps tends to be ignored. In a series of field studies near Amacayacu, Colombian Amazonia, we tested if hemiepiphytic aroids quickly colonize such open habitats through seed dispersal, sprouting plant fragments, or lateral invasion of flagellar aroids from the closed forest nearby. A seed germination experiment applying two soil substrates and three shade levels showed that abundant light reduced the germination success of three Philodendron species. A total of 400 cuttings from five Philodendron species were placed in forest clearings and almost 12% of these sprouted within 14 wk. Monitoring more than 2000 aroid plants over 14 mo in different habitats showed that recruitment was low (0.3 plants per 10 m2) compared with initial densities (3.1 plants per 10 m2). Flagellar aroids grew about 2.5 times faster than non-flagellar aroids. In forest edges they reached a mean apical growth of 98 cm in 14 mo. However, non-flagellar aroids were five to six times more abundant than flagellar individuals everywhere. It was concluded that hemiepiphytic aroids colonize open habitats mostly through a post-disturbance survival of plants or plant fragments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDERSON, M. C. 1964. Studies in the woodland light climate. The photographic computation of light conditions. Journal of Ecology 52:2741.CrossRefGoogle Scholar
ANDRADE, I. M. & MAYO, S. J. 1998. Dynamic shoot morphology in Monstera adansonii Schott var. klotzschiana (Schott) Madison (Araceae). Kew Bulletin 53:399417.CrossRefGoogle Scholar
ANDRADE, I. M. & MAYO, S. J. 2000. Dynamic shoot morphology in root-climbing Araceae: Philodendron rudgeanum Schott and Ph. fragrantissimum (Hook.) G.Don. Feddes Repertorium 111:295314.CrossRefGoogle Scholar
BALCÁZAR-VARGAS, M. P., PEÑUELA-MORA, M. C., VAN ANDEL, T. R. & ZUIDEMA, P. A. 2012. The quest for a suitable host: size distributions of host trees and secondary hemiepiphytes search strategy. Biotropica 22:1926.CrossRefGoogle Scholar
BAZZAZ, F. A. & PICKETT, S. T. A. 1980. Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology, Evolution, and Systematics 11:287310.CrossRefGoogle Scholar
BENAVIDES, A., WOLF, J. H. D. & DUIVENVOORDEN, J. F. 2006. Recovery and succession of epiphytes in upper Amazonian fallows. Journal of Tropical Ecology 22:705717.CrossRefGoogle Scholar
BENAVIDES, A., VASCO, A., DUQUE, A. & DUIVENVOORDEN, J. F. 2011. Association of vascular epiphytes with landscape units and phorophytes in humid lowland forests of Colombian Amazonia. Journal of Tropical Ecology 27:223237.CrossRefGoogle Scholar
BJØRNSTAD, O. N. & FALCK, W. 2001. Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics 8:5370.CrossRefGoogle Scholar
CHAO, K., PHILLIPS, O. L., GLOOR, E., MONTEAGUDO, A., TORRES-LEZAMA, A. & VÁSQUEZ, M. R. 2008. Growth and wood density predict tree mortality in Amazon forests. Journal of Ecology 96:281292.CrossRefGoogle Scholar
CHAZDON, R. L. 1986. Light variation and carbon gain in rain-forest understory palms. Journal of Ecology 74:9951012.CrossRefGoogle Scholar
CLARK, D., PALMER, M. & CLARK, D. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:26622675.CrossRefGoogle Scholar
COTTAM, G. & CURTIS, J. 1956. The use of distance measures in phytosociological sampling. Ecology 37:451460.CrossRefGoogle Scholar
CROAT, T. 1992. Species diversity of Araceae in Colombia: a preliminary survey. Annals of the Missouri Botanical Garden 79:1728.CrossRefGoogle Scholar
DALLING, J. W., SWAINE, M. D. & GARWOOD, N. C. 1998. Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest. Ecology 79:564578.CrossRefGoogle Scholar
DENSLOW, J. S. 1987. Tropical rainforest gaps and tree species diversity. Annual Review of Ecology, Evolution, and Systematics 18:431451.CrossRefGoogle Scholar
DIETZE, M. C. & CLARK, J. S. 2008. Changing the gap dynamics paradigm: vegetative regeneration control on forest response to disturbance. Ecological Monographs 78:331347.CrossRefGoogle Scholar
ENGEMAN, R. M., SUGIHARA, R. T., PANK, L. F. & DUSENBERRY, W. E. 1994. A comparison of plotless density estimators using Monte Carlo simulation. Ecology 75:17691779.CrossRefGoogle Scholar
FRAZER, G. W., CANHAM, C. D. & LERTZMAN, K. P. 1999. Gap Light Analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users’ manual and program documentation. Version 2.0. Simon Fraser University, Burnaby. 36 pp.Google Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
GRUBB, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52:107145.CrossRefGoogle Scholar
HALE, S. E. & EDWARDS, C. 2002. Comparison of film and digital hemispherical photography across a wide range of canopy densities. Agricultural and Forest Meteorology 112:5156.CrossRefGoogle Scholar
HOFFMAN, W. A. & POORTER, H. 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany 80:3742.CrossRefGoogle Scholar
KHAN, M., RAI, J. & TRIPATHI, R. 1986. Regeneration and survival of tree seedlings and sprouts in tropical deciduous and sub-tropical forests of Meghalaya, India. Forest Ecology and Management 14:293304.CrossRefGoogle Scholar
LASSO, E., ENGELBRECHT, B. M. & DALLING, J. W. 2009. When sex is not enough: ecological correlates of resprouting capacity in congeneric tropical forest shrubs. Oecologia 161:4356.CrossRefGoogle Scholar
LEIMBECK, R. M. & BALSLEV, H. 2001. Species richness and abundance of epiphytic Araceae on adjacent floodplain and upland forest in Amazonian Ecuador. Biodiversity and Conservation 10:15791593.CrossRefGoogle Scholar
NIEDER, J., ENGWALD, S., KLAWUN, M. & BARTHLOTT, W. 2000. Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni crane plot) of southern Venezuela. Biotropica 32:385396.CrossRefGoogle Scholar
PEÑALOSA, J. 1984. Basal branching and vegetative spread in two tropical rain-forest lianas. Biotropica 16:19.CrossRefGoogle Scholar
PINHEIRO, J. C. & BATES, D. M. 2000. Mixed-effects models in S and S-Plus. Springer, New York. 528 pp.CrossRefGoogle Scholar
PUTZ, F. 1984. The natural-history of lianas on Barro-Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
RAY, T. S. 1992. Foraging behavior in tropical herbaceous climbers (Araceae). Journal of Ecology 80:189203.CrossRefGoogle Scholar
ROXBURGH, J. & KELLY, D. 1995. Uses and limitations of hemispherical photography for estimating forest light environments. New Zealand Journal of Ecology 19:213217.Google Scholar
RUDAS, A. & PRIETO, A. 2005. Flórula del Parque Nacional Natural Amacayacu Amazonas, Colombia. Missouri Botanical Garden Press, St Louis. 680 pp.Google Scholar
RÜGER, N., BERGER, U., HUBBELL, S. P., VIEILLEDENT, G. & CONDIT, R. 2011. Growth strategies of tropical tree species: disentangling light and size effects. PLoS ONE 6:e25330.CrossRefGoogle ScholarPubMed
SAMPAIO, M. C., ARAUJO, T. F., SCARANO, F. R. & STUEFER, J. F. 2004. Directional growth of a clonal bromeliad species in response to spatial habitat heterogeneity. Evolutionary Ecology 18:429442.CrossRefGoogle Scholar
SARKAR, D. 2008. Lattice: multivariate data visualization with R. Springer, New York. 268 pp.CrossRefGoogle Scholar
SCHNITZER, S. A. & CARSON, W. P. 2001. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82:913919.CrossRefGoogle Scholar
SCHNITZER, S. A., DALLING, J. W. & CARSON, W. P. 2000. The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology 88:655666.CrossRefGoogle Scholar
SCHNITZER, S. A., MASCARO, J. & CARSON, W. P. 2008. Treefall gaps and the maintenance of species diversity in tropical forests. Pp. 196209 in Carson, W. P. & Schnitzer, S. A. (eds.). Forest community ecology. Wiley-Blackwell, Oxford.Google Scholar
ZAR, J. H. 1999. Biostatistical analysis. (Fourth edition). Prentice-Hall, Upper Saddle River. 663 pp.Google Scholar
ZUUR, A. F., IENO, E., WALKER, N. J., SAVALIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 574 pp.CrossRefGoogle Scholar