Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T09:47:07.392Z Has data issue: false hasContentIssue false

Climate and soil drive forest structure in Bolivian lowland forests

Published online by Cambridge University Press:  31 May 2011

Marisol Toledo*
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Lourens Poorter
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Marielos Peña-Claros
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Alfredo Alarcón
Affiliation:
Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Julio Balcázar
Affiliation:
Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Claudio Leaño
Affiliation:
Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Juan Carlos Licona
Affiliation:
Instituto Boliviano de Investigación Forestal (IBIF), Casilla 6204, Santa Cruz, Bolivia
Frans Bongers
Affiliation:
Forest Ecology and Forest Management Group, Centre for Ecosystem Studies, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
*
1Corresponding author. Email: mtoledo@ibifbolivia.org.bo

Abstract:

Climate is one of the most important factors determining variation in forest structure, but whether soils have independent effects is less clear. We evaluate how climate and soil independently affect forest structure, using 89 200 stems ≥ 10 cm dbh from 220 1-ha permanent plots distributed along environmental gradients in lowland Bolivia. Fifteen forest structural variables, related to vertical structure (forest height and layering), horizontal structure (basal area, median and the 99th percentile of the stem diameter and size-class distribution) and density of life forms (tree, palm and liana), were evaluated. Environmental variables were summarized in four multivariate axes, related to rainfall, temperature, soil fertility and soil texture. Multiple regression indicates that all structural variables were affected by one or more of the environmental axes, but the explained variation was generally low (median R2 = 0.15). Rainfall and soil texture affected most forest structural variables (respectively 87% and 80%) and had qualitatively similar effects. This suggests that plant water availability, as determined by rainfall and soil water retention capacity, is the strongest driver of forest structure, whereas soil fertility was a weaker driver of forest structure, affecting 53% of the variables. Maximum forest height, palm density, total basal area and liana infestation showed the strongest responses to environmental variation (with R2 ranging from 0.31–0.82). Forest height, palm density and total basal area increased with plant water availability, while liana infestation decreased with plant water availability. Therefore, multiple rather than single environmental factors must be used to explain the structure of tropical forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALDER, D. & SYNNOTT, T. J. 1992. Permanent sample plot techniques for mixed tropical forest. Tropical Forestry Papers 25. Oxford Forestry Institute. 124 pp.Google Scholar
ASHTON, P. S. & HALL, P. 1992. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. Journal of Ecology 80:459481.CrossRefGoogle Scholar
BALFOUR, D. A. & BOND, W. J. 1993. Factors limiting climber distribution and abundance in a southern African forest. Journal of Ecology 81:9399.CrossRefGoogle Scholar
BONGERS, F. 2001. Methods to assess tropical rain forest canopy structure: an overview. Plant Ecology 153:263277.CrossRefGoogle Scholar
BONGERS, F., POPMA, J., MEAVE DEL CASTILLO, J. & CARABIAS, J. 1988. Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:5580.CrossRefGoogle Scholar
BRADY, N. C. 1990. The nature and properties of soils. (Tenth edition). MacMillan Publishing Company, New York. 621 pp.Google Scholar
CAI, Z. Q. & BONGERS, F. 2007. Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, southwest China. Journal of Tropical Ecology 23:115118.CrossRefGoogle Scholar
CARSE, L. E., FREDERICKSEN, T. S. & LICONA, J. C. 2000. Liana–tree species associations in a Bolivian dry forest. Tropical Ecology 41:110.Google Scholar
CLARK, D. A., CLARK, D. B., SANDOVAL, R. & CASTRO, M. V. 1995. Edaphic and human effects on landscape-scale distribution of tropical rain forest palms. Ecology 76:25812594.CrossRefGoogle Scholar
CLARK, D. B. & CLARK, D. A. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185198.CrossRefGoogle Scholar
CLINEBELL, R. R. I., PHILLIPS, O. L., GENTRY, A. H., STARK, N. & ZUURING, H. 1995. Prediction of tropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation 4:5690.CrossRefGoogle Scholar
CONTRERAS, F., LEAÑO, C., LICONA, J. C., DAUBER, E., GUNNAR, L., HAGER, N. & CABA, C. 1999. Guía para la instalación y evaluación de parcelas permanentes de muestreo (PPMs). BOLFOR-PROMABOSQUE, Santa Cruz, Bolivia. 50 pp.Google Scholar
DAWKINS, H. C. & FIELD, D. R. B. 1978. A long-term surveillance system for British woodland vegetation. Department of Forestry, Oxford University, Oxford. 106 pp.Google Scholar
DE GOUVENAIN, R. C. & SILANDER, J. A. 2003. Do tropical storm regimes influence the structure of tropical lowland rain forests? Biotropica 35:166180.Google Scholar
DEWALT, S. J. & CHAVE, J. 2004. Structure and biomass of four lowland Neotropical forests. Biotropica 36:719.Google Scholar
DEWALT, S. J., SCHNITZER, S. A. & DENSLOW, J. S. 2000. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology 16:119.CrossRefGoogle Scholar
DEWALT, S. J., ICKES, K., NILUS, R., HARMS, K. E. & BURSLEM, D. F. R. P. 2006. Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecology 186:203216.CrossRefGoogle Scholar
DEWALT, S. J., SCHNITZER, S. A., CHAVE, J., BONGERS, F., BURNHAM, R. J., CAI, Z., CHUYONG, G., CLARK, D. B., EWANGO, C. E. N., GERWING, J. J., GORTAIRE, E., HART, T., IBARRA-MANRIQUEZ, G., ICKES, K., KENFACK, D., MACÍA, M. J., MAKANA, J., MARTÍNEZ-RAMOS, M., MASCARO, J., MOSES, S., MULLER-LANDAU, H. C., PARREN, M. P. E., PARTHASARATHY, N., PÉREZ-SALICRUP, D. R., PUTZ, F. E., ROMERO-SALTOS, H. & THOMAS, D. 2010. Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309317.CrossRefGoogle Scholar
FABER-LANGENDOEN, D. & GENTRY, A. H. 1991. The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica 23:211.CrossRefGoogle Scholar
GENTRY, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.CrossRefGoogle Scholar
GENTRY, A. H. 1991. The distribution and evolution of climbing plants. Pp. 349 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
GENTRY, A. H. & TERBORGH, J. 1990. Composition and dynamics of the Cocha Cashu “mature” floodplain forest. Pp. 542564 in Gentry, A. H. (ed.). Four neotropical rainforests. Yale University Press. New Haven.Google Scholar
GEROLD, G. 2003. La base para la biodiversidad: el suelo. Pp. 1831 in Ibisch, P. L. & Mérida, G. (eds.). Biodiversidad: la riqueza de Bolivia. Estado de conocimiento y conservación. Ministerio de Desarrollo Sostenible. Editorial FAN, Santa Cruz, Bolivia.Google Scholar
IBARRA-MANRÍQUEZ, G. & MARTÍNEZ-RAMOS, M. 2002. Landscape variation of liana communities in a neotropical rain forest. Plant Ecology 160:91112.CrossRefGoogle Scholar
IPCC. 2007. Climate change 2007: Impacts, Adaptation and Vulnerability. Fourth Assessment Report (AR4). Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 976 pp.Google Scholar
JHA, C. S. & SINGH, J. S. 1990. Composition and dynamics of dry tropical forest in relation to soil texture. Journal of Vegetation Science 1:609614.Google Scholar
KAHN, F. & HENDERSON, A. 1999. An overview of the palms of the várzea in the Amazon region. Advances in Economic Botany 13:187193.Google Scholar
KILLEEN, T. J., JARDIM, A., MAMANI, F. & ROJAS, N. 1998. Diversity, composition and structure of a tropical semideciduous forest in the Chiquitania region of Santa Cruz, Bolivia. Journal of Tropical Ecology 14:803827.CrossRefGoogle Scholar
LAURANCE, W. F., PÉREZ-SALICRUP, D., DELAMÓNICA, P., FEARNSIDE, P. M., D'ANGELO, S., JEROZOLINSKI, A., POHL, L. & LOVEJOY, T. E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105116.CrossRefGoogle Scholar
LEWIS, S. L., PHILLIPS, O. L., BAKER, T. R., LLOYD, J., MALHI, Y., ALMEIDA, S., HIGUCHI, N., LAURANCE, W. F., NEILL, D. A., SILVA, J. N. M., TERBORGH, J., LEZAMA, A. T., MARTÍNEZ, R. V., BROWN, S., CHAVE, J., KUEBLER, C., VARGAS, P. N. & VINCETI, B. 2004. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London B Biological Sciences. 359:421436.CrossRefGoogle ScholarPubMed
LICONA-VASQUEZ, J. C., PEÑA-CLAROS, M. & MOSTACEDO, B. 2007. Composición florística, estructura y dinámica de un bosque amazónico aprovechado a diferentes intensidades en Pando, Bolivia. BOLFOR & IBIF, Santa Cruz, Bolivia. 49 pp.Google Scholar
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84:137152.CrossRefGoogle Scholar
LOSOS, E., ASHTON, P. S., BROKAW, N., BUNYAVEJCHEWIN, S., CONDIT, R., CHUYONG, G., CO, L., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., EWANGO, C., FOSTER, R., GUNATILLEKE, N., GUNATILLEKE, S., HART, T., HERNANDEZ, C., HUBBELL, S., ITOH, A., JOHN, R., KANZAKI, M., KENFACK, D., KIRATIPRAYOON, S., LAFRANKIE, J., LEE, H. S., LIENGOLA, I., LAO, S., LOSOS, E., MAKANA, J.R., MANOKARAN, N., NAVARRETE, H., OHKUBO, T., PÉREZ, R., PONGPATTANANURAK, N., SAMPER, C., SRI-NGERNYUANG, KRIANGSAK, SUKUMAR, R., SUN, I. F., SURESH, H. S., TAN, S., THOMAS, D., THOMPSON, J., VALLEJO, M., VILLA MUÑOZ, G., VALENCIA, R., YAMAKURA, T. & ZIMMERMAN, J. 2004. The structure of tropical forests. Pp. 6978 in Losos, E. C. & Leigh, E. G. (eds.). Tropical forest diversity and dynamism: findings from a large-scale plot network. The University of Chicago Press, Chicago.Google Scholar
MADEIRA, B. G., ESPÍRITO-SANTO, M. M., NETO, S. D., NUNES, Y. R. F., AZOFEITA, G. A. S., FERNANDES, G. W. & QUESADA, M. 2009. Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecology 201:291304.CrossRefGoogle Scholar
MALHI, Y., PHILLIPS, O. L., LLOYD, J., BAKER, T., WRIGHT, J., ALMEIDA, S., ARROYO, L., FREDERIKSEN, T., GRACE, J., HIGUCHI, N., KILLEEN, T., LAURANCE, W. F., LEANO, C., LEWIS, S., MEIR, P., MONTEAGUDO, A., NEILL, D., NÚÑEZ VARGAS, P., PANFIL, S. N., PATIÑO, S., PITMAN, N., QUESADA, C. A., RUDAS-LL, A., SALOMAO, R., SALESKA, S., SILVA, N., SILVEIRA, M., SOMBROEK, W. G., VALENCIA, R., VÁSQUEZ MARTÍNEZ, R., VIEIRA, I. C. G. & VINCETI, B. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13:439450.CrossRefGoogle Scholar
MASCARO, J., SCHNITZER, S. A. & CARSON, W. P. 2004. Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica. Forest Ecology and Management 190:314.CrossRefGoogle Scholar
MILLIKEN, W. 1998. Structure and composition of one hectare of central Amazonian terra firme forest. Biotropica 30:530537.CrossRefGoogle Scholar
MURPHY, P. G. & LUGO, A. E. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17:6788.CrossRefGoogle Scholar
NEBEL, G., KVIST, L. P., VANCLAY, J. K., CHRISTENSEN, H., FREITAS, L. & RUIZ, J. 2001. Structure and floristic composition of flood plain forests in the Peruvian Amazon. 1. Overstorey. Forest Ecology and Management 150:2757.CrossRefGoogle Scholar
NEWBERY, D. M., CAMPBELL, E. J. F., LEE, Y. F., RIDSDALE, C. E. & STILL, M. J. 1992. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia: structure, relative abundance and family composition. Philosophical Transactions: Biological Sciences, The Royal Society 335:341356.Google Scholar
PAOLI, G. D., CURRAN, L. M. & SLIK, J. W. F. 2008. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecología 155:287299.CrossRefGoogle ScholarPubMed
PARTHASARATHY, N., MUTHURAMKUMAR, S. & REDDY, M. S. 2004. Patterns of liana diversity in tropical evergreen forest of Peninsular India. Forest Ecology and Management 190:1531.CrossRefGoogle Scholar
PÉREZ-SALICRUP, D. R., SORK, V. L. & PUTZ, F. E. 2001. Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica 33:3447.CrossRefGoogle Scholar
POORTER, L., HAWTHORNE, W., BONGERS, F. & SHEIL, D. 2008. Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance. Journal of Ecology 96:495504.CrossRefGoogle Scholar
POULSEN, A. D., TUOMISTO, H. & BALSLEV, H. 2006. Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica 38:468478.CrossRefGoogle Scholar
PROCTOR, J., ANDERSON, J. M., CHAI, P. & VALLACK, H. W. 1983. Ecological studies in 4 contrasting lowland rain forests. Journal of Ecology 71:237260.CrossRefGoogle Scholar
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
PUTZ, F. E. & CHAI, P. 1987. Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. Journal of Ecology 75:523531.CrossRefGoogle Scholar
RICHARDS, P. W. 1996. The tropical rain forest: An ecological study. Cambridge University Press, Cambridge. 575 pp.Google Scholar
SAXE, H., CANNELL, M. G. R., JOHNSEN, B., RYAN, M. G. & VOURLITIS, G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149:369399.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17:223230.CrossRefGoogle Scholar
SESNIE, S. E., FINEGAN, B., GESSLER, P. E. & RAMOS, Z. 2009. Landscape-scale environmental and floristic variation in Costa Rican old-growth rain forest remnants. Biotropica 41:1626.CrossRefGoogle Scholar
SPIES, T. A. 1998. Forest structure: a key to the ecosystem. Northwest Science 72:3439.Google Scholar
SUÁREZ-SORUCO, M. 2000. Compendio de la Geología de Bolivia. Cochabamba, Bolivia. 114 pp.Google Scholar
SWAINE, M. D. & GRACE, J. 2007. Lianas may be favored by low rainfall: evidence from Ghana. Plant Ecology 192:271276.CrossRefGoogle Scholar
SWAINE, M. D., LIEBERMAN, D. & HALL, J. B. 1990. Structure and dynamics of a tropical dry forest in Ghana. Vegetatio 88:3151.CrossRefGoogle Scholar
TAKYU, M., KUBOTA, Y., AIBA, S., SEINO, T. & NISHIMURA, T. 2005. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecological Research 20:287296.CrossRefGoogle Scholar
TER STEEGE, H., PITMAN, N., SABATIER, D., CASTELLANOS, H., VAN DER HOUT, P., DALY, D. C., SILVEIRA, M., PHILLIPS, O., VASQUEZ, R., VAN ANDEL, T., DUIVENVOORDEN, J., DE OLIVEIRA, A. A., EK, R., LILWAH, R., THOMAS, R., VAN ESSEN, J., BAIDER, C., MAAS, P., MORI, S., TERBORGH, J., VARGAS, P. N., MOGOLLÓN, H. & MORAWETZ, W. 2003. A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity and Conservation 12:22552277.CrossRefGoogle Scholar
TOLEDO, M. 2010. Neotropical lowland forests along environmental gradients. PhD thesis, Wageningen University, the Netherlands.Google Scholar
TOLEDO, M., POORTER, L., PEÑA-CLAROS, M., ALARCÓN, A., BALCÁZAR, J., CHUVIÑA, J., LEAÑO, C., LICONA, J. C., TER STEEGE, H. & BONGERS, F. 2011a. Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica doi:10.1111/j.1744–7429.2010.00711.xCrossRefGoogle Scholar
TOLEDO, M., POORTER, L., PEÑA-CLAROS, M., ALARCÓN, A., BALCÁZAR, J., LEAÑO, C., LICONA, J. C., LLANQUE, O., VROOMANS, V., ZUIDEMA, P. & BONGERS, F. 2011b. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology 99:254264.CrossRefGoogle Scholar
USLAR, I., MOSTACEDO, B. & SALDIAS, M. 2004. Composición, estructura y dinámica de un bosque seco semideciduo en Santa Cruz, Bolivia. Ecología en Bolivia 39:2543.Google Scholar
VELARDE, M. J. & MORAES, M. 2008. Densidad de individuos adultos y producción de frutos del asaí (Euterpe precatoria, Arecaceae) en Riberalta, Bolivia. Ecología en Bolivia 43:99110.Google Scholar
VIEIRA, S., BARBOSA, DE, CAMARGO, P., SELHORST, D., DA SILVA, R., HUTYRA, L., CHAMBERS, J. Q., BROWN, I. F., HIGUCHI, N., DOS SANTOS, J., WOFSY, S. C., TRUMBORE, S. E. & MARTINELLI, L. A. 2004. Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecología 140:468479.CrossRefGoogle ScholarPubMed
VORMISTO, J. 2002. Palms as rainforest resources: how evenly are they distributed in Peruvian Amazonia? Biodiversity and Conservation 11:10251045.CrossRefGoogle Scholar
VORMISTO, J., SVENNING, J. C., HALL, P. & BALSLEV, H. 2004. Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology 92:577588.CrossRefGoogle Scholar
WHITE, D. A. & HOOD, C. S. 2004. Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatan Peninsula. Journal of Vegetation Science 15:151160.CrossRefGoogle Scholar