Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T23:46:44.596Z Has data issue: false hasContentIssue false

Abundance of liana species in an Amazonian forest of Brazil reflects neither adventitious root nor foliar sprout production

Published online by Cambridge University Press:  26 July 2018

Paulo Ricardo Rodrigues Piovesan
Affiliation:
Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Botânica. Av. André Araújo, n° 2936, Aleixo. 69.080-971, Manaus, AM, Brazil
José Luís Campana Camargo
Affiliation:
Projeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia, C.P. 478, Manaus, AM 69011–970, Brazil
Robyn Jeanette Burnham*
Affiliation:
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48108-2228, USA
Isolde Dorothea Kossmann Ferraz
Affiliation:
Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade. PO Box 2223, 69080–971, Manaus, AM, Brazil
*
*Corresponding author. Email: rburnham@umich.edu

Abstract:

Liana abundance and size have increased in neotropical forests. High vegetative reproductive capacity (clonality) may be the cause of high abundance in some liana species. Correlations between vegetative propagation capacity and (1) relative abundance of liana species, (2) rooting and foliar sprouting potentials of congeneric species, and (3) phylogenetic position were determined. Species selection was based on the relative abundance of lianas in ten 0.5-ha parcels in continuous forest within the Biological Dynamics of Forest Fragments Project (BDFFP), Brazil. Five individuals per species were replicated with seven cuttings per individual. Cuttings placed in moistened sand and coconut fibre were observed for 5 mo in a humid greenhouse. Survival percentage, rooting percentage, potential regeneration index and longest root length were determined per species. The two most abundant species (9.3% and 4.1% relative abundance) had low vegetative regeneration capacity, contrary to expectations. However, a significant, positive relationship between vegetative propagation and relative abundance of liana species whose relative abundances were <4% was found. Congeneric species showed no difference in vegetative propagation between rare and abundant species, except congeners of Machaerium. Vegetative reproductive capacity occurred in all major evolutionary lineages, but was highest in Fabaceae and Bignoniaceae, families of high abundance both locally and broadly across Neotropical forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVIRA, D., PUTZ, F. E. & FREDERICKSEN, T. S. 2004. Liana loads and post-logging liana densities after liana cutting in a lowland forest in Bolivia. Forest Ecology and Management 190:7386.Google Scholar
ANGYALOSSY, V., PACE, M. R. & LIMA, A. C. 2015. Liana anatomy: a broad perspective on structural evolution of the vascular system. Pp. 253287 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds). The ecology of lianas. Wiley-Blackwell, Oxford.Google Scholar
BALLESTER, A., SÁNCHEZ, M. C., SAN-JOSÉ, M. C., VIEITEZ, F. J. & VIEITEZ, A. M. 1990. Development of rejuvenation methods for in vitro establishment, multiplication and rooting of mature trees. Pp. 4349 in Rodriguez, R., Tamés, R. S. & Durzan, D. J. (eds). Plant aging: basic and applied approaches. Springer, Boston.Google Scholar
BURNHAM, R. J. 2004. Alpha and beta diversity of lianas in Yasunı, Ecuador. Forest Ecology and Management 190:4355.Google Scholar
BURT-SMITH, G. S., GRIME, J. P. & TILMAN, D. 2003. Seedling resistance to herbivory as a predictor of relative abundance in a synthesised prairie community. Oikos 101:345353.Google Scholar
CABALLÉ, G. 1994. Ramet proliferation by longitudinal splitting in the Gabonese rain forest liana Dalhousiea africana S. Moore (Papilionaceae). Biotropica 26:266275.Google Scholar
CELIS, G. & AVALOS, G. 2013. Acclimation of seedlings of Gnetum leyboldii Tul. (Gnetaceae) to light changes in a tropical rain forest. Revista Biología Tropical 61:18591868.Google Scholar
CÉPHAS, M. N., BASILE, H., NICOLAS, B., FRANÇOIS, H. M., JEAN, L. & PIERRE, M. 2012. Life strategy traits of the liana Sericostachys scandens spreading in the montane forests in the Kahuzi-Biega National Park (DR Congo). Journal of Mountain Science 9:665675.Google Scholar
CHAO, W., WU, S., FAN, S., LIN, H., HSIEH, C. F. & CHAO, K. C. 2008. Distribution patterns of tree species in a lowland rainforest at Nanjen Lake, Southern Taiwan. Taiwania: 53:124133.Google Scholar
ENGELBRECHT, B. M. J., COMITA, L. S., CONDIT, R., KURSAR, T. A., TYREE, M. T., TURNER, B. L. & HUBBELL, S. P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:8082.Google Scholar
FISHER, J. B. & EWERS, F. 1995. Vessel dimensions in liana and tree species of Gnetum (Gnetales). American Journal of Botany 82:13501357.Google Scholar
GENTRY, A. H. 1991. The distribution and evolution of climbing plants. Pp. 350 in Putz, F. E. & Mooney, H. A. (eds). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
GERWING, J. J. 2006. The influence of reproductive traits on liana abundance 10 years after conventional and reduced-impacts logging in the eastern Brazilian Amazon. Forest Ecology and Management 221:8390.Google Scholar
GERWING, J. J., SCHNITZER, S. A., BURNHAM, R. J., BONGERS, F., CHAVE, J., DEWALT, S. J., ESWANGO, C. E. N., FOSTER, R., KENFACK, D., MARTÍNEZ-RAMOS, M., PARTHASARATHY, N., PÉREZ-SALICRUP, D. R., PUTZ, F. E. & THOMAS, D. W. 2006. A standard protocol for liana censuses. Biotropica 38:256261.Google Scholar
HERBEN, T., NOVÁKOVÁ, Z. & KLIMESONÁ, J. 2014. Clonal growth and plant species abundance. Annals of Botany 114:377388.Google Scholar
JARA-GUERRERO, A., DE LA CRUZ, M. & MÉNDEZ, M. 2011. Seed dispersal spectrum of woody species in south Ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica 43:722730.Google Scholar
LAN, G., GETZIN, S., WIEGAND, T., HU, Y., XIE, G., ZHU, H. & CAO, M. 2012. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China. PLoS ONE 7:19. e46074.Google Scholar
LAURANCE, W. F., ANDRADE, A. S., MAGRACH, A., CAMARGO, J. L., VALSKO, J. J., CAMPBELL, M., FEARNSIDE, P. M., EDWARDS, W., LOVEJOY, T. E. & LAURANCE, S. G. 2014. Long‐term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95:16041611.Google Scholar
LAVERGNE, S., THOMPSON, J. D., GARNIER, E. & DEBUSSCHE, M. 2004. The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505518.Google Scholar
LEDO, A. & SCHNITZER, S. A. 2014. Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95:21692178.Google Scholar
LPWG (Legume Phylogeny Working Group) 2017. Phylogeny and classification of the Leguminosae. Taxon 6:4477.Google Scholar
LOHMANN, L. G. 2006. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). American Journal of Botany 93:304318.Google Scholar
LOHMANN, L. G. & TAYLOR, C. M. 2014. A new generic classification of tribe Bignonieae (Bignoniaceae). Annals of the Missouri Botanical Garden 99: 248439.Google Scholar
MARON, J. L. & CRONE, E. 2006. Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society, B: Biological Sciences 273:25752584.Google Scholar
NABE-NIELSEN, J. 2004. Demography of Machaerium cuspidatum, a shade-tolerant neotropical liana. Journal of Tropical Ecology 20:505516.Google Scholar
ORTIZ, R. DEL C., WANG, W., JACQUES, F. M. B. & CHEN, Z. 2016. Phylogeny and a revised tribal classification of Menispermaceae (moonseed family) based on molecular and morphological data. Taxon 65:12881312.Google Scholar
PARREN, M. & BONGERS, F. 2001. Does climber cutting reduce felling in southern Cameroon? Forest Ecology and Management 141:175188.Google Scholar
QUESADA, C. A., LLOYD, J., ANDERSON, L. O., FYLLAS, N. M., SCHWARZ, M. & CZIMCZIK, C. I. 2009. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:14151440.Google Scholar
RADAM-BRASIL. 1978. Programa nacional: levantamento de recursos naturais. (Eighteenth edition). Ministério de Minas e Energia, Departamento Nacional de Produção Mineral, Rio de Janeiro. Brasil.Google Scholar
RANKIN-DE-MERONA, J. M., HUTCHINGS, R. W. & LOVEJOY, T. 1990. Tree mortality and recruitment over a five-year period in undisturbed upland rainforest of the central Amazon. Pp. 573584 in Gentry, A. H. (ed.). Four neotropical forests. Yale University Press, New Haven.Google Scholar
ROEDER, M., HÖLSCHER, D. & FERRAZ, I. D. K. 2012. Traits and growth of liana regeneration in primary and secondary forests of Central Amazonia. Applied Vegetation Science 15:108118.Google Scholar
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.Google Scholar
SCHNITZER, S. A. & BONGERS, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14:397406.Google Scholar
SCHNITZER, S. A., PARREN, M. P. E. & BONGERS, F. 2004. Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. Forest Ecology and Management 190:8798.Google Scholar
SCHNITZER, S. A., RUTISHAUSER, S. & AGUILAR, S. 2008. Supplemental protocol for liana censuses. Forest Ecology and Management 255:10441049.Google Scholar
SCHNITZER, S. A., MANGAN, S. A., DALLING, J. W., BALDECK, C. A., HUBBELL, S. P., LEDO, A., MULLER-LANDAU, H., TOBIN, M. F., AGUILAR, S., BRASSFIELD, D., HERNANDEZ, A., LAO, S., PEREZ, R., OLDEMAR VALDES, O., & YORKE, S. R. 2012. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS ONE 7 (12):e52114.Google Scholar
SILVA, D. B., VIEIRA, R. F., COREDEIRO, M. C. T., PEREIRA, E. B. C. & PEREIRA, A. V. 2011. Propagação vegetativa de Brosimum gaudichaudii Tréc. (mama-cadela) por estacas de raízes. Revista Brasileira de Plantas Medicinais 13:151156.Google Scholar
TER STEEGE, H., PITMAN, N. C. A., PHILLIPS, O. L., CHAVE, J., SABATIER, D., DUQUE, A., MOLINO, J.-F., PRÉVOST, M.-F., SPICHIGER, R., CASTELLANOS, H., VON HILDEBRAND, P. & VÁSQUEZ, R. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444447.Google Scholar
ZULQARNAIN, I. A. S., SFAIR, J. C., VAN MELIS, J., ROCHELLE, A. L. C., WEISER, V. L. & MARTINS, F. R. 2016. Does phylogeny have a role in the liana-phorophyte interaction in tropical forests? Perspectives in Plant Ecology, Evolution and Systematics 21:1422.Google Scholar
Supplementary material: File

Piovesan et al. supplementary material

Piovesan et al. supplementary material Figure S1

Download Piovesan et al. supplementary material(File)
File 39.8 KB