Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:26:44.497Z Has data issue: false hasContentIssue false

Solute behaviour and export rates in neotropical montane catchments under different land-uses

Published online by Cambridge University Press:  10 March 2011

Amelie Bücker
Affiliation:
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management, Justus-Liebig-Universität Gießen, Heinrich-Buff Ring 26, 35392 Giessen, Germany
Patricio Crespo
Affiliation:
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management, Justus-Liebig-Universität Gießen, Heinrich-Buff Ring 26, 35392 Giessen, Germany Grupo de Ciencias de la Tierra y del Ambiente, DIUC, Universidad de Cuenca, Quinta de Balzain, Av. Victor Manuel Albornoz, Cuenca, Ecuador
Hans-Georg Frede
Affiliation:
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management, Justus-Liebig-Universität Gießen, Heinrich-Buff Ring 26, 35392 Giessen, Germany
Lutz Breuer*
Affiliation:
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management, Justus-Liebig-Universität Gießen, Heinrich-Buff Ring 26, 35392 Giessen, Germany
*
1Corresponding author. Email: lutz.breuer@umwelt.uni-giessen.de

Abstract:

To improve our knowledge of the influence of land-use on solute behaviour and export rates in neotropical montane catchments we investigated total organic carbon (TOC), Ca, Mg, Na, K, NO3 and SO4 concentrations during April 2007–May 2008 at different flow conditions and over time in six forested and pasture-dominated headwaters (0.7–76 km2) in Ecuador. NO3 and SO4 concentrations decreased during the study period, with a continual decrease in NO3 and an abrupt decrease in February 2008 for SO4. We attribute this to changing weather regimes connected to a weakening La Niña event. Stream Na concentration decreased in all catchments, and Mg and Ca concentration decreased in all but the forested catchments during storm flow. Under all land-uses TOC increased at high flows. The differences in solute behaviour during storm flow might be attributed to largely shallow subsurface and surface flow paths in pasture streams on the one hand, and a predominant origin of storm flow from the organic layer in the forested streams on the other hand. Nutrient export rates in the forested streams were comparable to the values found in literature for tropical streams. They amounted to 6–8 kg ha−1 y−1 for Ca, 7–8 kg ha−1 y−1 for K, 4–5 kg ha−1 y−1 for Mg, 11–14 kg ha−1 y−1 for Na, 19–22 kg ha−1 y−1 for NO3 (i.e. 4.3–5.0 kg ha−1 y−1 NO3-N) and 17 kg ha−1 y−1 for SO4. Our data contradict the assumption that nutrient export increases with the loss of forest cover. For NO3 we observed a positive correlation of export value and percentage forest cover.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDERSON, S. P., DIETRICH, W. E., TORRES, R., MONTGOMERY, D. R. & LOAGUE, K. 1997. Concentration-discharge relationships in runoff from a steep, unchanneled catchment. Water Resources Research 33:211225.CrossRefGoogle Scholar
ATAROFF, M. 2001. Water fluxes in a cloud forest of the Venezuelan Andes. Pp. 384388 in Gladwell, J. S. (ed.). Proceedings of the Second International Colloquium on Hydrology and Water Management in the Humid Tropics. UNESCO Technical Documents in Hydrology 52. UNESCO, Paris.Google Scholar
ATAROFF, V. & RADA, F. 2000. Deforestation impact on water dynamics in a Venezuelan Andean cloud forest. Ambio 29:440444.CrossRefGoogle Scholar
AUCOUR, A. M., TAO, F. A., MOREIRA-TURCQ, P., SEYLER, P., SHEPPARD, S. & BENEDETTI, M. F. 2003. The Amazon river: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimoes confluence. Chemical Geology 197:271285.CrossRefGoogle Scholar
AULENBACH, B. T. & HOOPER, R. P. 2006. The composite method: an improved method for stream-water solute load estimation. Hydrological Processes 20:30293047.CrossRefGoogle Scholar
BECK, E., MAKESCHIN, F., HAUBRICH, F., RICHTER, M., BENDIX, J. & VALAREZO, C. 2008. The ecosystem (Reserva Biológica San Francisco). Pp. 114 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer Verlag, Berlin.CrossRefGoogle Scholar
BEIDERWIEDEN, E., WRZESINSKY, T. & KLEMM, O. 2005. Chemical characterization of fog and rain water collected at the eastern Andes cordillera. Hydrology and Earth System Sciences 9:185191.CrossRefGoogle Scholar
BENDIX, J., FABIAN, P. & ROLLENBECK, R. 2004. Gradients of fog and rain in a tropical montane cloud forest of southern Ecuador and its chemical composition. Proceedings of the Third International Conference on Fog, Fog Collection and Dew. Cape Town ZA: 1–4.Google Scholar
BENDIX, J., ROLLENBECK, R., RICHTER, M., FABIAN, P. & EMCK, P. 2008. Climate. Pp. 6374 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer Verlag, Berlin.CrossRefGoogle Scholar
BIGGS, T. W., DUNNE, T. & MURAOKA, T. 2006. Transport of water, solutes and nutrients from a pasture hillslope, southwestern Brazilian Amazon. Hydrological Processes 20:25272547.CrossRefGoogle Scholar
BORBOR-CORDOVA, M. J., BOYER, E. W., MCDOWELL, W. & HALL, C. A. 2006. Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador. Biogeochemistry 79:135161.CrossRefGoogle Scholar
BOY, J. & WILCKE, W. 2008. Tropical Andean forest derives calcium and magnesium from Saharan dust. Global Biogeochemical Cycles 22, GB1027, doi:10.1029/2007GB002960.CrossRefGoogle Scholar
BOY, J., VALAREZO, C. & WILCKE, W. 2008a. Water flow paths in soil control element exports in an Andean tropical montane forest. European Journal of Soil Science 59:12091227.CrossRefGoogle Scholar
BOY, J., ROLLENBECK, R., VALAREZO, C. & WILCKE, W. 2008b. Amazonian biomass burning – derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Global Biogeochemical Cycles 22:GB4011, doi:10.1029/2007GB003158.CrossRefGoogle Scholar
BRUIJNZEEL, L. A. 1991. Nutrient input–output budgets of tropical forest ecosystems: a review. Journal of Tropical Ecology 7:124.CrossRefGoogle Scholar
BRUIJNZEEL, L. A. 2001. Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1:118.Google Scholar
BRUIJNZEEL, L. A. 2004. Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture Ecosystems & Environment 104:185228.CrossRefGoogle Scholar
BUBB, P., MAY, I., MILES, L. & SAYER, J. 2004. Cloud forest agenda. UNEP–WCMC Biodiversity Series 20:134.Google Scholar
BÜCKER, A., CRESPO, P., FREDE, H. -G., VACHE, K. B., CISNEROS, F. & BREUER, L. 2010. Identifying controls on water chemistry of tropical cloud forest catchments – combining descriptive approaches and multivariate analysis. Aquatic Geochemistry 16:127149.CrossRefGoogle Scholar
BUYTAERT, W., WYSEURE, G., DE BIEVRE, B. & DECKERS, J. 2005. The effect of land-use changes on the hydrological behaviour of Histic Andosols in south Ecuador. Hydrological Processes 19:39853997.CrossRefGoogle Scholar
BUYTAERT, W., CÉLLERI, R., DE BIEVRE, B., CISNEROS, F., WYSEURE, G., DECKERS, J. & HOFSTEDE, R. 2006. Human impact on the hydrology of the Andean páramos. Earth Science Reviews 79: 5372.CrossRefGoogle Scholar
CLIMATE PREDICTION CENTER/NCEP/NWS. 2008. El niño southern oscillation (ENSO) diagnostic discussion. National Centers for Environmental Prediction. Camp Springs.Google Scholar
DOUGLAS, M. W., MEJIA, J., ORDINOLA, N. & BOUSTEAD, J. 2009. Synoptic variability of rainfall and cloudiness along the coasts of northern Peru and Ecuador during the 1997/98 El Niño event. Monthly Weather Review 137:116136.CrossRefGoogle Scholar
ELSENBEER, H. & LACK, A. 1996. Hydrometric and hydrochemical evidence for fast flowpaths at La Cuenca, western Amazonia. Journal of Hydrology 180:237250.CrossRefGoogle Scholar
ELSENBEER, H., WEST, A. & BONELL, M. 1994. Hydrologic pathways and stormflow hydrochemistry at South Creek, Northeast Queensland. Journal of Hydrology 162:121.CrossRefGoogle Scholar
ELSENBEER, H., LACK, A. & CASSEL, K. 1995. Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia. Water Resources Research 31:30513058.CrossRefGoogle Scholar
EUGSTER, W., BURKARD, R., HOLWERDA, F., SCATENA, F. N. & BRUIJNZEEL, L. A. S. 2006. Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology 139:288306.CrossRefGoogle Scholar
FABIAN, P., KOHLPAINTNER, M. & ROLLENBECK, R. 2005. Biomass burning in the Amazon – fertilizer for the mountaineous [sic] rain forest in Ecuador. Environmental Science and Pollution Research 12:290296.CrossRefGoogle ScholarPubMed
GERMER, S., NEILL, C., VETTER, T., CHAVES, J., KRUSCHE, A. V. & ELSENBEER, H. 2009. Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. Journal of Hydrology 364:349363.CrossRefGoogle Scholar
GOLLER, R., WILCKE, W., FLEISCHBEIN, K., VALAREZO, C. & ZECH, W. 2006. Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry 77:5789.CrossRefGoogle Scholar
GOOVAERTS, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228:113129.CrossRefGoogle Scholar
GÖTTLICHER, D., OBREGÓN, A., HOMEIER, J., ROLLENBECK, R., NAUSS, T. & BENDIX, J. 2009. Land-cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. International Journal of Remote Sensing 30:18671886.CrossRefGoogle Scholar
GRIMALDI, C., GRIMALDI, M., MILLET, A., BARIAC, T. & BOULEGUE, J. 2004. Behaviour of chemical solutes during a storm in a rainforested headwater catchment. Hydrological Processes 18:93106.CrossRefGoogle Scholar
HAFKENSCHEID, R., BRUIJNZEEL, L. A., DE JEU, R. A. M. & BINK, N. J. 2001. Water budgets of two upper montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Proceedings of the Second International Colloquium on Hydrology and Water Management in the Humid Tropics. Panamá City, Panamá. UNESCO Technical Documents in Hydrology 52:399424.Google Scholar
HARTKAMP, A. D., DE BEURS, K., STEIN, A. & WHITE, J. W. 1999. Interpolation techniques for climate variables. NRG-GIS Series 99:127.Google Scholar
JOHNSON, M. S. & LEHMANN, J. 2006. Double-funneling of trees: stemflow and root-induced preferential flow. Ecoscience 13:324333.CrossRefGoogle Scholar
JOHNSON, N. M., LIKENS, G. E., BORMANN, F. H., FISHER, D. W. & PIERCE, R. S. 1969. A working model for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Water Resources Research 5:13531363.CrossRefGoogle Scholar
KEENE, W. C., PSZENNY, A. A. P., GALLOWAY, J. N. & HAWLEY, M. E. 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research 91:66476658.CrossRefGoogle Scholar
LESACK, L. F. W. & MELACK, J. M. 1996. Mass balance of major solutes in a rainforest catchment in the Central Amazon: implications for nutrient budgets in tropical rainforests. Biogeochemistry 32:115142.CrossRefGoogle Scholar
LIKENS, G. E., BORMANN, F. H., JOHNSON, N. M., FISHER, D. W. & PIERCE, R. S. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed ecosystem. Ecological Monographs 40:2347.CrossRefGoogle Scholar
LITHERLAND, M., ASPDEN, J. A. & JEMIELITA, R. A. 1994. The metamorphic belts of Ecuador. British Geological Survey Overseas Memoir 11:1147.Google Scholar
LIU, W., FOX, J. E. D. & XU, Z. 2003. Nutrient budget of a montane evergreen broad-leaved forest at Ailao Mountain National Nature Reserve, Yunnan, southwest China. Hydrological Processes 17:11191134.CrossRefGoogle Scholar
LOWE, W. H. & LIKENS, G. E. 2005. Moving headwater streams to the head of the class. Bioscience 55:196197.CrossRefGoogle Scholar
MAKESCHIN, F., HAUBRICH, F., ABIY, M., BURNEO, J. I. & KLINGER, T. 2008. Pasture management and natural soil regeneration. Pp. 413424 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer Verlag, Berlin.Google Scholar
MCCLAIN, M. E. & NAIMAN, R. J. 2008. Andean influences on the biogeochemistry and ecology of the Amazon river. Bioscience 58:325338.CrossRefGoogle Scholar
MCDOWELL, W. & ASBURY, C. E. 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography 39:111125.CrossRefGoogle Scholar
MEYBECK, M. & HELMER, R. 1989. The quality of rivers: from pristine stage to global pollution. Global and Planetary Change 1:283309.CrossRefGoogle Scholar
NEILL, C., DEEGAN, L. A., THOMAS, S. M. & CERRI, C. C. 2001. Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecological Applications 11:18171828.CrossRefGoogle Scholar
NEWBOLD, J. D., SWEENEY, B. W., JACKSON, J. K. & KAPLAN, L. A. 1995. Concentrations and export of solutes from six mountain streams in northwestern Costa-Rica. Journal of the North American Benthological Society 14:2137.CrossRefGoogle Scholar
PERRIN, J. L., BOUVIER, C., JANEAU, J. L., MENEZ, G. & CRUZ, F. 2001. Rainfall/runoff processes in a small peri-urban catchment in the Andes mountains. The Rumihurcu Quebrada, Quito (Ecuador). Hydrological Processes 15:843854.CrossRefGoogle Scholar
PETERSON, B. J., WOLLHEIM, W. M., MULHOLLAND, P. J., WEBSTER, J. R., MEYER, J. L., TANK, J. L., MARTI, E., BOWDEN, W. B., VALETT, H. M. & HERSHEY, A. E. 2001. Control of nitrogen export from watersheds by headwater streams. Science 292:8690.CrossRefGoogle ScholarPubMed
RHOADES, C. C., ECKERT, G. E. & COLEMAN, D. C. 1998. Effect of pasture trees on soil nitrogen and organic matter: implications for tropical montane forest restoration. Restoration Ecology 6:262270.CrossRefGoogle Scholar
SALMON, C. D., WALTER, M. T., HEDIN, L. O. & BROWN, M. G. 2001. Hydrological controls on chemical export from an undisturbed old-growth Chilean forest. Journal of Hydrology 253:6980.CrossRefGoogle Scholar
SAUNDERS, T. J., MCCLAIN, M. E. & LLERENA, C. A. 2006. The biogeochemistry of dissolved nitrogen, phosphorus, and organic carbon along terrestrial-aquatic flowpaths of a montane headwater catchment in the Peruvian Amazon. Hydrological Processes 20:25492562.CrossRefGoogle Scholar
SAVOIE, D. L., PROSPERO, J. M. & SALTZMANN, E. S. 1989. Non-sea-salt sulfate and nitrate in trade wind aerosols at Barbados: evidence for long-range transport. Journal of Geophysical Research 94:50695080.CrossRefGoogle Scholar
SCHLEPPI, P., WALDNER, P. A. & STÄHLI, M. 2006. Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling. Journal of Hydrology 319:266281.CrossRefGoogle Scholar
SCHRUMPF, M., ZECH, W., LEHMANN, J. & LYARUU, H. V. C. 2006. TOC, TON, TOS and TOP in rainfall, throughfall, litter percolate and soil solution of a montane rainforest succession at Mt. Kilimanjaro, Tanzania. Biogeochemistry 78:361387.CrossRefGoogle Scholar
STELZER, R. S. & LIKENS, G. E. 2006. Effects of sampling frequency on estimates of dissolved silica export by streams: the role of hydrological variability and concentration-discharge relationships. Water Resources Research 42: W07415, doi:10.1029/2005WR004615.CrossRefGoogle Scholar
TOWNSEND-SMALL, A., MCCLAIN, M. E., HALL, B., NOGUERA, J. L., LLERENA, C. A. & BRANDES, J. A. 2007. Suspended sediments and organic matter in mountain headwaters of the Amazon river: results from a 1-year time series study in the central Peruvian Andes. Geochimica et Cosmochimica Acta 72:732740.CrossRefGoogle Scholar
TSUJIMURA, M., ONDA, Y. & ITO, J. 2001. Stream water chemistry in a steep headwater basin with high relief. Hydrological Processes 15:18471858.CrossRefGoogle Scholar
VICENTE-SERRANO, S. M., SAZ-SÁNCHEZ, M. A. & CUADRAT, J. M. 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Research 24:161180.CrossRefGoogle Scholar
WERNER, F. A., HOMEIER, J. & GRADSTEIN, S. R. 2005. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11:2140.Google Scholar
WILCKE, W., YASIN, S., SCHMITT, C., VALAREZO, C. & ZECH, W. 2008. Soils along the altitudinal transect and in catchments. Pp. 7586 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer Verlag, Berlin.CrossRefGoogle Scholar
WILLIAMS, M. R. & MELACK, J. M. 1997. Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38:67102.CrossRefGoogle Scholar
YUSOP, Z., DOUGLAS, I. & NIK, A. R. 2006. Export of dissolved and undissolved nutrients from forested catchments in Peninsular Malaysia. Forest Ecology and Management 224:2644.CrossRefGoogle Scholar