Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:34:57.334Z Has data issue: false hasContentIssue false

Soil nutrient availability, root symbioses and tree species composition in tropical Africa: a review

Published online by Cambridge University Press:  10 July 2009

Peter Högberg
Affiliation:
Department of Forest Site Research, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden

Abstract

Relations between soil nutrient availability, the occurrence of root symbioses and tree species composition in tropical Africa are discussed in the light of new evidence. Transects from humid areas at the equator towards the deserts can be summarized as follows:

High availability of nitrogen, low availability of phosphorus, low pH and aluminium toxicity probably restrict the competitiveness of nitrogen-fixing species in the forests on highly weathered and leached soils in humid west and central Africa. Ectomycorrhizal species attain dominance in species-poor forests on the soils poorest in phosphorus, while species with vesicular-arbuscular (VA) mycorrhiza form diverse forests on more fertile soils. Nitrogen-fixing species, which mostly are VA mycorrhizal, are more common in woodlands, where nitrogen is lost in grass fires, than in forests, which have a more closed nitrogen cycle. Low availability of phosphorus, however, limits the growth of nitrogen-fixing species in moist savannas. Ectomycorrhizal species are dominant, possibly because of a competitive advantage conferred by the large storage capacity of the fungal mantles under conditions of discontinuous nutrient supply. Nitrogen-fixing species become more abundant towards drier areas with an increase in soil phosphorus and a decline in soil nitrogen. These conditions culminate at the desert fringe, where nitrogen-fixing species reach their most conspicuous development.

It is concluded that soil nutrient availability and root symbioses interact and strongly affect the composition of vegetation communities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Alexander, I. J. 1983. The significance of ectomycorrhizas in the nitrogen cycle. Pp. 6993 in Lee, J. A., McNeill, S. & Rorison, L H. (eds.). Nitrogen as an ecological factor. Blackwell, Oxford.Google Scholar
Alexander, I. J. 1985. Mycorrhizas of west African forest trees. P. 447 in Molina, R. (ed). Proceedings of the 6th North American Conference on Mycorrhizae. Oregon State University, Corvallis.Google Scholar
Alexander, I J. 1986. Systematics and ecology of ectomycorrhizal legumes. Annals of Missouri Botanical Garden, in press.Google Scholar
Alexander, I. J. & Högberg, P. 1986. Ectomycorrhizas of tropical angiospermous trees. New Phytologist 102:541549.Google Scholar
Allen, O. N. & Allen, E. K. 1981. The Leguminosae. A source book of characteristics, uses and nodulation. Macmillan, London. 812 pp.Google Scholar
Asamoa, G. K. 1980. A survey of nitrogen levels in the major soils of Ghana. Pp. 171179 in Rosswall, T. (ed.). Nitrogen cycling in West African ecosystems. SCOPE/UNEP/Royal Swedish Academy of Sciences, Stockholm.Google Scholar
Bell, R. H. V. 1982. The effect of soil nutrient availability on community structure in African ecosystems. Pp. 193216 in Huntley, B. J. & Walker, B. H. (eds). Ecology of tropical savannas. Springer, Berlin.Google Scholar
Bonnier, C. 1957. Symbiose Rhizobium-légumineuses en région équatoriale. L'Institut National pour l'Etude Agronomique du Congo Béige, Serie Scientifique 72. 67 pp.Google Scholar
Bonnier, C. 1958. Discussion: Chapter 13; some factors affecting nodulation in the tropics, by G. B. Masefield. Pp. 212213 in Hallsworth, E. G.Nutrition of the legumes. Butterworths, London.Google Scholar
Bowen, G. D. & Smith, S. E. 1981. The effects of mycorrhizas on nitrogen update by plants. Ecological Bulletins (stockholm) 33:237247.Google Scholar
Buringh, P. 1979. Introduction to the study of soils in tropical and subtropical regions (3rd edition). Centre for Agricultural Publishing and Documentation, Wageningen. 124 pp.Google Scholar
Calton, W. E. 1959. Generalizations on some Tanganyika soil data. Journal of Soil Science 10:169176.Google Scholar
Coe, M. J.Cumming, D. M. & Phillipson, J. 1976. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22:341354.Google Scholar
Cole, M. M.. The influence of soils, geomorphology and geology on the distribution of plant communities in savanna ecosystems. Pp. 145174 in Huntley, B. J. & Walker, B. H. (eds). Ecology of tropical savannas. Springer, Berlin.Google Scholar
Corby, H. D. L., 1974. Systematic implications of nodulation among Rhodesian legumes. Kirkia 9:301329.Google Scholar
Dommergues, Y. R., Diem, H. G., Gauthier, D. L., Dreyfus, B. L. & Cornet, F. 1984. Nitrogen-fixing trees in the tropics: potentialities and limitations. Pp. 713 in Veeger, C. & Newton, W. E. (eds) Advances in nitrogen fixation research. Martinus Nijhoff/Dr W. Junk, The Hague and Pudoc, Wageningen.Google Scholar
Fanshawe, D. B. 1969. The vegetation of Zambia. Forest Research Bulletin 7, Government Printer, Lusaka. 67 pp.Google Scholar
Fao-Unesco. 1977. Soil Map of the World, 1:5 000 000, Vol VI, Africa. Unesco, Paris. 299 pp. with map in three sheets.Google Scholar
Fassi, B. 1963. Die Verteilung der ektotrophen Mykorrhizen in der Streuund in der oberen Bodenschicht der Gilbertiodendron deueiurei-(Caesalpiniaceae)-Wälder im Kongo. Pp. 297302 in Rawald, W. & Lyr, G. (eds). Mykorrhiza. Gustav Fischer, Jena.Google Scholar
Fassi, B. & Fontana, A. 1961. Le miccorrize ectotrofiche di Julbemardia seretii, Caesalpiniaceae del Congo. Allionia 7:131157.Google Scholar
Fassi, B. & Fontana, A. 1962. Micorrize ectotrofiche de Brachystegia laurentii e di alcune altre di Caesalpiniaceae minori del Congo. Allionia 8:121131.Google Scholar
Gadgil, R. L. & Gadgil, P. D. 1975. Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. New Zealand Journal of Forest Science 5:3541.Google Scholar
Gartlan, J. S., Newbery, D. McC., Thomas, D. W. & Waterman, P. G. 1986. The influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroun. Vegetatio 65:131148.Google Scholar
Gianinazzi-Pearson, V. & Diem, H. G. 1982. Endomycorrhizae in the tropics. Pp. 209251 in Dommergues, Y. R. & Diem, H. G. (eds). Microbiology of tropical soils and plant productivity. Mar-tinus Nijhoff/Dr W. Junk, The Hague.Google Scholar
Grobbelaar, N., Beijma van, M. C. & Saubert, S. 1964. Additions to the list of nodule-bearing legume species. South African Journal of Agricultural Science 7, 265270.Google Scholar
Harley, J. L. & Smith, S. E. 1983. Mycorrhizal symbiosis. Academic Press, London. 483 pp.Google Scholar
HÖgberg, P. 1982. Mycorrhizal associations in some woodland and forest trees and shrubs in Tanzania. New Phytologist 92:407415.Google Scholar
HÖgberg, P. 1986. Nitrogen fixation and nutrient relations in savanna woodland trees (Tanzania). Journal of Applied Ecology 23:675688.Google Scholar
Högberg, P. & Nylund, J. -E. 1981. Ectomycorrhizae in coastal miombo woodland of Tanzania. Plant and Soil 63:283289.Google Scholar
HöGberg, P. & Piearce, G. D. 1986. Mycorrhizas in Zambian trees in relation to host taxonomy, vegetation type and successional patterns. Journal of Ecology 74:775785.Google Scholar
Huntley, B. J. 1982. Southern African savannas. Pp. 101119 in Huntley, B. J. & Walker, B. H. (eds). Ecology of tropical savannas. Springer, Berlin.Google Scholar
Huntley, B. J. & Morris, J. W. 1982. Structure of the Nylsvley savanna. Pp. 433455 in Huntley, B. J. & Walker, B. H. (eds). Ecology of tropical savannas. Springer, Berlin.Google Scholar
Huntley, B. J. & Walker, B. H. 1982. Conclusions: characteristic features of tropical savannas. Pp. 657660 in Huntley, B. J. & Walker, B. H. (eds). Ecology of tropical savannas. Springer, Berlin.Google Scholar
Isichei, A. O. & Sanford, W. W. 1980. Nitrogen loss by burning from Nigerian grassland ecosystems. Pp. 325331 in Rosswall, T. (ed.). Nitrogen cycling in West African ecostystems. SCOPE/UNEP/ Royal Swedish Academy of Sciences, Stockholm.Google Scholar
Janos, D. P. 1980. Mycorrhizae influence tropical succession. Biotropica 12 (Supplement), 5664.Google Scholar
Janos, D. P. 1983. Tropical mycorrhizas, nutrient cycles and plant growth. Pp. 327345 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds). Tropical rain forest: ecology and management. Black-well, Oxford.Google Scholar
Janos, D. P. 1985. Mycorrhizal fungi: agents or symptoms of tropical community composition? Pp. 98103 in Molina, R. (ed.). Proceedings of the 6th North American Conference on Mycorrhizae. Oregon State University, Corvallis.Google Scholar
Janzen, D. H. 1974. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6:69103.Google Scholar
Jenik, J. & Mensah, K. O. A. 1967. Root systems of tropical trees. I. Ectotrophic mycorrhizae of Afzelia africana Sm. Preslia 39:5965.Google Scholar
Lawton, R. M. 1978. A study of the dynamic ecology of Zambian vegetation. Journal of Ecology 66:175198.Google Scholar
Milne, G. 1935. Composite units for the mapping of complex soil associations. Transactions of the 3rd International Congress on Soil Science 1:345347.Google Scholar
Milne, G. 1947. A soil reconnaissance journey through parts of Tanganyika Territory, December 1935 to February 1936. Journal of Ecology 35:192265.Google Scholar
Morison, C. G. T., Hoyle, A. C. & Hope-Simpson, J. F. 1948. Tropical soil-vegetation catenas and mosaics. Journal of Ecology 36:184.Google Scholar
Munns, D. N. & Mosse, B. 1980. Mineral nutrition of legume crops. Pp. 115125 in Summerfield, R. J. & Bunting, A. H. (eds). Advances in Legume Science. Royal Botanic Gardens, Kew.Google Scholar
Newbery, D. Mcc, Gartlan, J. S.Mckey, D. B. & Waterman, P. G. 1986. The influence of drainage and soil phosphorus on the vegetation of Douala-Edea Forest Reserve, Cameroun. Vegetatio 65:149162.Google Scholar
Nye, P. H. 1958. The mineral composition of some shrubs and trees in Ghana. Journal of West African Science Association 4:9198.Google Scholar
Nye, P. H. & Greenland, D. J. 1960. The soil under shifting cultivation. Technical Communication 51, Commonwealth Agricultural Bureaux, Harpenden. 156 pp.Google Scholar
Peyronel, B. & Fassi, B. 1957. Micorrize ectotrofiche in una Caesalpiniacea del Congo Belga. Atti Accademia delle Scienze di Torino 91:569576.Google Scholar
Peyronel, B. & Fassi, B. 1960. Nuovi casi de simbiosi ectomicorrizica in Leguminose della famiglia delle Caesalpiniacea. Atti Accademia delle Scienze di Torino 94:3638.Google Scholar
Redhead, J. F. 1960. A study of mycorrhizal associations in some trees of western Nigeria. Diploma thesis, University of Oxford.Google Scholar
Redhead, J. F. 1968. Mycorrhizal associations in some Nigerian forest trees. Transactions of the British Mycological Society 51:377387.Google Scholar
Redhead, J. F. 1974. Aspects of the biology of mycorrhizal associations occurring on tree species in Nigeria. Ph.D. thesis, University of Ibadan.Google Scholar
Redhead, J. F. 1975. Endotrophic mycorrhizas in Nigeria: some aspects of the ecology of the endotrophic mycorrhizal association of Khaya grandifolia C.DC. Pp. 447459 in Sanders, F. E., Mosse, B. & Tinker, P. B. (eds). Endomycorrhizas. Academic Press, London.Google Scholar
Redhead, J. F. 1980. Mycorrhiza in natural tropical forests. Pp. 127142 in Mikola, P. (ed.). Tropical mycorrhiza research. Oxford University Press, Oxford.Google Scholar
Redhead, J. F. 1982. Ectomycorrhizae in the tropics. Pp. 253269 in Dommergues, Y. R. & Diem, H. G. (eds). Microbiology of tropical soils and plant productivity. Martinus Nijhoff/Dr W. Junk, The Hague.Google Scholar
Russell, E. W. 1973. Soil conditions and plant growth (10th edition). Longman, London. 849 pp.Google Scholar
Singer, R. & Araujo, L de J. da S. 1979. Litter decomposition and ectomycorrhiza in Amazonian forests. I. A comparison of litter decomposing and ectomycorrhizal Basidiomycetes in latosol-terrafirme ain forest and white podzol Campinarana. Acta Amazonica 9:2541.Google Scholar
Sprent, J. I. 1979. The biology of nitrogen-fixing organisms. McGraw-Hill, London. 196 pp.Google Scholar
Sprent, J. I. 1983. Agricultural and horticultural systems: implications for forestry. Pp. 213232 in Gordon, J. C. & Wheeler, C. T. (eds). Biological nitrogen fixation in forest ecosystems: foundations and applications. Martinus Nijhoff/Dr W. Junk, The Hague.Google Scholar
Tinley, K. L. 1982. The influence of soil moisture balance on ecosystem patterns in south Africa. Pp. 173192 in Huntley, B. J. & Walker, B. H. (eds). Ecology of tropical savannas. Springer, Berlin.Google Scholar
Trapnell, C. G. 1959. Ecological results of woodland burning experiments in northern Rhodesia. Journal of Ecology 47:129168.Google Scholar
Tucker, C. J., Townshend, J. R. G. & Goff, T. E. 1985. African landcover classification using satellite data. Science 277:369375.Google Scholar
White, F. 1983. The vegetation of Africa. Unesco, Paris. 356 pp.Google Scholar
Young, A. 1976. Tropical soils and soil survey. Cambridge University Press, Cambridge. 468 pp.Google Scholar