Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T10:00:58.707Z Has data issue: false hasContentIssue false

Significance of the localization of phosphorus among tissues on a cross-section of leaf lamina of Bornean tree species for phosphorus-use efficiency

Published online by Cambridge University Press:  13 June 2017

Yuki Tsujii*
Affiliation:
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606–8502 Kyoto, Japan
Masakazu Oikawa
Affiliation:
National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263–8555, Japan
Kanehiro Kitayama
Affiliation:
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606–8502 Kyoto, Japan
*
*Corresponding author. Email: yukitsuj@gmail.com

Abstract:

A greater relative allocation of phosphorus (P) to photosynthetically active cells functions to maintain a rapid photosynthesis under P limitation, and may be a key mechanism of plants to use P efficiently. This mechanism has not been studied in tropical trees despite the productivity of tropical forests often being limited by P. In this study, the spatial distribution of P among tissues on a cross-section of leaf lamina was analysed for 13 tree species from P-limited sites on Mount Kinabalu, Borneo. Most species showed greater P concentration in palisade mesophyll than in spongy mesophyll and epidermal tissues, suggesting that tropical trees under P limitation localize foliar P in photosynthetic palisade mesophyll.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BERENDSE, F. & AERTS, R. 1987. Nitrogen-use-efficiency: a biologically meaningful definition? Functional Ecology 1:293296.Google Scholar
CHOONG, M. F., LUCAS, P. W., ONG, J. S. Y., PEREIRA, B., TAN, H. T. W. & TURNER, I. M. 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121:597610.CrossRefGoogle Scholar
CLEVELAND, C. C., TOWNSEND, A. R., TAYLOR, P., ALVAREZ-CLARE, S., BUSTAMANTE, M. M. C., CHUYONG, G., DOBROWSKI, S. Z., GRIERSON, P., HARMS, K. E., HOULTON, B. Z., MARKLEIN, A., PARTON, W., PORDER, S., REED, S. C., SIERRA, C. A., SILVER, W. L., TANNER, E. V. J. & WIEDER, W. R. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14:939947.Google Scholar
CONN, S. & GILLIHAM, M. 2010. Comparative physiology of elemental distributions in plants. Annals of Botany 105:10811102.CrossRefGoogle ScholarPubMed
ESCUDERO, A., DEL ARCO, J. M., SANZ, I. C. & AYALA, J. 1992. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:8087.CrossRefGoogle ScholarPubMed
HAN, W., FANG, J., GUO, D. & ZHANG, Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168:377385.CrossRefGoogle ScholarPubMed
HAWKINS, H. J., HETTASCH, H., MESJASZ-PRZYBYLOWICZ, J., PRZYBYLOWICZ, W. & CRAMER, M. D. 2008. Phosphorus toxicity in the Proteaceae: a problem in post-agricultural lands. Scientia Horticulturae 117:357365.CrossRefGoogle Scholar
HIDAKA, A. & KITAYAMA, K. 2009. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. Journal of Ecology 97:984991.CrossRefGoogle Scholar
HIDAKA, A. & KITAYAMA, K. 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology 99:849857.CrossRefGoogle Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.Google Scholar
KITAYAMA, K. & AIBA, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
LAMBERS, H., CAWTHRAY, G. R., GIAVALISCO, P., KUO, J., LALIBERTÉ, E., PEARSE, S. J., SCHEIBLE, W.-R., STITT, M., TESTE, F. & TURNER, B. L. 2012. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytologist 196:10981108.CrossRefGoogle ScholarPubMed
LAMBERS, H., CLODE, P. L., HAWKINS, H. J., LALIBERTÉ, E., OLIVEIRA, R. S., REDDELL, P., SHANE, M. W., STITT, M. & WESTON, P. 2015. Metabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availability. Pp. 289336 in Plaxton, W. C. & Lambers, H. (eds). Annual plant reviews. Volume 48, phosphorus metabolism in plants. John Wiley & Sons, Hoboken.Google Scholar
OIKAWA, M., SUYA, N., KONISHI, T., ISHIKAWA, T. & HAMANO, T. 2015. Micro-PIXE analysis system at NIRS-electrostatic accelerator facility for various applications. International Journal of PIXE 25:217225.CrossRefGoogle Scholar
ONODA, Y., RICHARDS, L. & WESTOBY, M. 2012. The importance of leaf cuticle for carbon economy and mechanical strength. New Phytologist 196:441447.CrossRefGoogle ScholarPubMed
POORTER, H., NIINEMETS, Ü., POORTER, L., WRIGHT, I. J. & VILLAR, R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182:565588.CrossRefGoogle ScholarPubMed
SHANE, M. W., MCCULLY, M. E. & LAMBERS, H. 2004. Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). Journal of Experimental Botany 55:10331044.CrossRefGoogle ScholarPubMed
SULPICE, R., ISHIHARA, H., SCHLERETH, A., CAWTHRAY, G. R., ENCKE, B., GIAVALISCO, P., IVAKOV, A., ARRIVAULT, S., JOST, R., KROHN, N., KUO, J., LALIBERTÉ, E., PEARSE, S. J., RAVEN, J. A., SCHEIBLE, W.-R., TESTE, F., VENEKLAAS, E. J., STITT, M. & LAMBERS, H. 2014. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant Cell and Environment 37:12761298.Google Scholar
TAKYU, M., AIBA, S. & KITAYAMA, K. 2002. Effects of topography on tropical lower montane on Mount Kinabulu, Borneo. Plant Ecology 159:3549.CrossRefGoogle Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.CrossRefGoogle Scholar