Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T21:22:01.923Z Has data issue: false hasContentIssue false

The interplay of spatial scale and landscape transformation modulates the abundance and intraspecific variation in the ecomorphological traits of a phyllostomid bat

Published online by Cambridge University Press:  10 November 2021

Andrés F. Ramírez-Mejía*
Affiliation:
Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá – Colombia ECOTONOS Research group, Universidad de los Llanos, Villavicencio – Colombia Instituto de Ecología Regional (IER) UNT – CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Yerba Buena – Argentina
J. Nicolás Urbina-Cardona
Affiliation:
Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá – Colombia
Francisco Sánchez
Affiliation:
ECOTONOS Research group, Universidad de los Llanos, Villavicencio – Colombia Programa de Biología, Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio – Colombia
*
Author for correspondence: Andrés F. Ramírez-Mejía, Email: andresfeliper.mejia@gmail.com

Abstract

Land use intensification imposes selective pressures that systematically change the frequency of wild population phenotypes. Growing evidence is biased towards the comparison of populations from discrete categories of land uses, ignoring the role of landscape emerging properties on the phenotype selection of wild fauna. Across the largest urban–rural gradient of the Colombian Orinoquia, we measured ecomorphological traits of 216 individuals of the flat-faced fruit-eating bat Artibeus planirostris. We did this to evaluate the scale of effect at which landscape transformation better predicts changes in phenotype and abundance of an urban-tolerant species. Forest percentage at 1.25 km was the main predictor affecting negatively bat abundance and positively its wing aspect ratio and body mass. Landscape variables affected forearm length at all spatial scales, this effect appeared to be sex-dependent, and the most important predictor, forest percentage at 0.5 km, had a negative effect on this trait. Our results indicate that landscape elements and spatial scale interact to shape ecomorphological traits and the abundance of A. planirostris. Interestingly, the scale of effect coincided at 1.25 km among all biological responses, suggesting that species’ abundance can be linked to the variation on phenotype under different environmental filters across landscape scenarios.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, MD, Magalhaes, PJ and Ram, SJ (2004) Image processing with ImageJ. Biophotonics International 11, 3642.Google Scholar
Alberti, M, Marzluff, J and Hunt, VM (2017) Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philosophical Transactions of the Royal Society B: Biological Sciences 372.CrossRefGoogle ScholarPubMed
Bartón, K (2016) Package ‘ MuMIn ’. Version 1.15.6. CRAN Google Scholar
Bates, D, Maechler, M, Bolker, B and Walker, S (2015) Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 148.CrossRefGoogle Scholar
Bates, M (1948) Climate and vegetation in the Villavicencio region of eastern Colombia. Geographical Review 38, 555574.CrossRefGoogle Scholar
Bernal, JH, Peña, AJ, Díaz, NC and Obando, D (2013) Condiciones climáticas de la altillanura plana colombiana en el contexto de cambio climático. 14-28 pp, En: Edgar Amézquita, Idupulapati M. Rao, Mariela Rivera, Irlanda I. Corrales y Jaime H. Bernal (eds.). Sistemas agropastoriles: un enfoque integrado. P. 288.Google Scholar
Blydenstein, J (1967) Tropical savanna vegetation of the llanos of Colombia. Ecology 48, 115.CrossRefGoogle Scholar
Bolnick, DI, Svanbäck, R, Fordyce, JA, Yang, LH, Davis, JM, Hulsey, CD and Forister, ML (2003) The ecology of individuals: Incidence and implications of individual specialization. American Naturalist 161, 128.CrossRefGoogle ScholarPubMed
Brändel, SD, Hiller, T, Halczok, TK, Kerth, G, Page, RA and Tschapka, M (2020) Consequences of fragmentation for Neotropical bats: The importance of the matrix. Biological Conservation 252, 108792. Elsevier.CrossRefGoogle Scholar
Bredt, A, Uieda, W and Pedro, W (2012) Plantas e morcegos: na recuperação de áreas degradadas e na paisagem urbana. Rede de Sementes do Cerrado.Google Scholar
Breheny, P and Burchett, W (2017) Visualization of Regression Models Using visreg. The R Journal 9, 5671.CrossRefGoogle Scholar
Caizergues, AE, Charmantier, A, Lambrechts, MM, Perret, S, Demeyrier, V, Lucas, A and Grégoire, A (2021) An avian urban morphotype: how the city environment shapes great tit morphology at different life stages. Urban Ecosystems. Urban Ecosystems.CrossRefGoogle Scholar
Camargo, F DE and Oliveira, HFM DE (2012) Sexual dimorphism in Sturnira lilium (Chiroptera, Phyllostomidae): can pregnancy and pup carrying be responsible for differences in wing shape ? PLoS ONE 7.CrossRefGoogle ScholarPubMed
Correa Ayram, CA, Etter, A, Díaz-Timoté, J, Rodríguez Buriticá, S, Ramírez, W and Corzo, G (2020) Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators 117, 106630. Elsevier.CrossRefGoogle Scholar
De Oliveira, HFM, Camargo, NF, Hemprich-Bennett, DR, Rodríguez-Herrera, B, Rossiter, SJ and Clare, EL (2020) Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia: Chiroptera). PLoS ONE 15, 117.Google Scholar
Delignette-Muller, ML and Dutang, C (2015) Fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software 64, 134.CrossRefGoogle Scholar
Díaz, M, Solari, S, Aguirre, LF, Aguiar, LMS and Barquez, RM (2016) Clave de identificación de los murciélagos de Sudamérica. Publicación especial No2, PCMA (programa de conservación de los murciélagos de Argentina), 160 pp.Google Scholar
Durant, KA, Hall, RW, Cisneros, LM, Hyland, RM and Willig, MR (2013) Reproductive phenologies of phyllostomid bats in Costa Rica. Journal of Mammalogy 94, 14381448.CrossRefGoogle Scholar
Echeverría-Londoño, S, Newbold, T, Hudson, LN, Contu, S, Hill, SLL, Lysenko, I, Arbeláez-Cortés, E, Armbrecht, I, Boekhout, T, Cabra-García, J, Dominguez-Haydar, Y, Nates-Parra, G, Gutiérrez-Lamus, DL, Higuera, D, Isaacs-Cubides, PJ, López-Quintero, CA, Martinez, E, Miranda-Esquivel, DR, Navarro-Iriarte, LE, Noriega, JA, Otavo, SE, Parra-H, A, Poveda, K, Ramirez-Pinilla, MP, Rey-Velasco, JC, Rosselli, L, Smith-Pardo, AH, Urbina-Cardona, JN and Purvis, A (2016) Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions 22, 10991111.CrossRefGoogle Scholar
Etter, A, McAlpine, C and Possingham, H (2008) Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Annals of the Association of American Geographers 98, 223.CrossRefGoogle Scholar
Farneda, FZ, Meyer, CFJ and Grelle, CEV (2020) Effects of land-use change on functional and taxonomic diversity of Neotropical bats. Biotropica 52, 120128.CrossRefGoogle Scholar
Farneda, FZ, Rocha, R, López-Baucells, A, Groenenberg, M, Silva, I, Palmeirim, JM, Bobrowiec, PED and Meyer, CFJ (2015) Trait-related responses to habitat fragmentation in Amazonian bats. Journal of Applied Ecology 52, 13811391.CrossRefGoogle Scholar
Gonçalves, F, Fischer, E and Dirzo, R (2017) Forest conversion to cattle ranching differentially affects taxonomic and functional groups of Neotropical bats. Biological Conservation 210, 343348. Elsevier.CrossRefGoogle Scholar
Google Earth (2016) Google Earth 7.1.7.2600 (December 23, 2015). Villavicencio, Meta - Colombia. 4° 07’ 0,96”N, 73° 37’ 40,04”W, Eye alt 1,85 km. DigitalGlobe 2016. http://www.earth.google.com [July 25, 2016].Google Scholar
Gorresen, PM, Willing, MR and Strauss, RE (2005) Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecological applications 15, 21262136.CrossRefGoogle Scholar
Hall, JM and Warner, DA (2017) Body size and reproduction of a non-native lizard are enhanced in an urban environment. Biological Journal of the Linnean Society 122, 860871.CrossRefGoogle Scholar
Hayward, B and Russell, D (1964) Flight speeds in western bats. Journal of Mammalogy 45, 591594.CrossRefGoogle Scholar
Hollis, L (2005) Artibeus planirostris. Mammalian Species 775, 1–6.CrossRefGoogle Scholar
Jara-Servín, AM, Saldaña-Vázquez, RA and Schondube, JE (2016) Nutrient availability predicts frugivorous bat abundance in an urban environment. Mammalia 81, 367374.Google Scholar
Jung, K and Kalko, EK V (2010) Where forest meets urbanization: foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. Journal of Mammalogy 91, 144153.CrossRefGoogle Scholar
Jung, K and Threlfall, CG (2016) Urbanisation and its effects on bats: a global meta-analysis. In Voigt, CC and Kingston, T (eds), Bats in the anthropocene: conservation of bats in a changing world. Cham Heidelberg New York Dordrecht London: Springer. pp. 1334.CrossRefGoogle Scholar
Kerches-Rogeri, P, Niebuhr, BB, Muylaert, RL and Mello, MAR (2020) Individual specialization in the use of space by frugivorous bats. Journal of Animal Ecology 89, 25842595.CrossRefGoogle ScholarPubMed
Korine, C and Pinshow, B (2004) Guild structure, foraging space use, and distribution in a community of insectivorous bats in the Negev Desert. Journal of Zoology London 262, 187196.CrossRefGoogle Scholar
Kuznetsova, A, Brockhoff, PB and Christensen, RHB (2017) lmerTest Package: tests in linear mixed effects models. Journal of Statistical Software 82, 126.CrossRefGoogle Scholar
Lazić, MM, Kaliontzopoulou, A, Carretero, MA and Crnobrnja-Isailović, J (2013) Lizards from urban areas are more asymmetric: Using fluctuating asymmetry to evaluate environmental disturbance. PLoS ONE 8.CrossRefGoogle ScholarPubMed
Lewis, F, Butler, A and Gilbert, L (2011) A unified approach to model selection using the likelihood ratio test. Methods in Ecology and Evolution 2, 155162.CrossRefGoogle Scholar
Liker, A, Papp, Z, Bókony, V and Lendvai, ÁZ (2008) Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. Journal of Animal Ecology 77, 789795.CrossRefGoogle ScholarPubMed
Marchán-Rivadeneira, MR, Larsen, PA, Phillips, CJ, Strauss, RE and Baker, RJ (2012) On the association between environmental gradients and skull size variation in the great fruit-eating bat, Artibeus lituratus (Chiroptera: Phyllostomidae). Biological Journal of the Linnean Society 105, 623634.CrossRefGoogle Scholar
Marinello, MM and Bernard, E (2014) Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. Canadian Journal of Zoology 92, 141147.CrossRefGoogle Scholar
Marquardt, DW (1980) Comment: you should standardize the predictor variables in your regression models. Journal of the American Statistical Association 75, 8791.Google Scholar
Martin, AE and Fahrig, L (2012) Measuring and selecting scales of effect for landscape predictors in species-habitat models. Ecological Applications 22, 22772292.CrossRefGoogle ScholarPubMed
Mendes, P, With, KA, Signorelli, L and De Marco, P Jr (2016) The relative importance of local versus landscape variables on site occupancy in bats of the Brazilian Cerrado. Landscape Ecology 32, 745762. Springer Netherlands.CrossRefGoogle Scholar
Meyer, CFJ and Kalko, EKV (2008) Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: Land-bridge islands as a model system. Journal of Biogeography 35, 17111726.CrossRefGoogle Scholar
Meyer, CFJ, Kalko, EKV and Kerth, G (2009) Small-scale fragmentation effects on local genetic diversity in two phyllostomid bats with different dispersal abilities in Panama. Biotropica 41, 95102.CrossRefGoogle Scholar
Meyer, CFJ, Struebig, MJ and Willing, MR (2016) Responses of tropical bats to habitat fragmentation, logging, and deforestation. In Voigt, CC and Kingston, T (eds.) Bats in the anthropocene: conservation of bats in a changing world. Cham Heidelberg New York Dordrecht L: Springer, 2016. pp. 63104.CrossRefGoogle Scholar
Miguet, P, Jackson, HB, Jackson, ND, Martin, AE and Fahrig, L (2016) What determines the spatial extent of landscape effects on species? Landscape Ecology 31, 11771194. Springer Netherlands.CrossRefGoogle Scholar
Morrison, DW (1980) Flight speeds of some tropical forest bats. The American Midland Naturalist 104, 189192.CrossRefGoogle Scholar
Norberg, UM and Rayner, JM V. (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 316, 335427.Google Scholar
Parsons, KJ, Rigg, A, Conith, AJ, Kitchener, AC, Harris, S and Zhu, H (2020) Skull morphology diverges between urban and rural populations of red foxes mirroring patterns of domestication and macroevolution. Proceedings of the Royal Society B: Biological Sciences 287.Google Scholar
Pinto, N and Keitt, TH (2008) Scale-dependent responses to forest cover displayed by frugivore bats. Oikos 117, 17251731.CrossRefGoogle Scholar
Powell, RA and Proulx, G (2003) Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. ILAR Journal 44, 259276.CrossRefGoogle ScholarPubMed
Puckett, EE, Sherratt, E, Combs, M, Carlen, EJ, Harcourt-Smith, W and Munshi-South, J (2020) Variation in brown rat cranial shape shows directional selection over 120 years in New York City. Ecology and Evolution 10, 47394748.CrossRefGoogle ScholarPubMed
Putman, BJ and Tippie, ZA (2020) Big city living: A global meta-analysis reveals positive impact of urbanization on body size in lizards. Frontiers in Ecology and Evolution 8, 013.CrossRefGoogle Scholar
Quinn, GP and Keough, MJ (2002) Experimental design and data analysis for biologists. United Kingdom: Cambridge University.CrossRefGoogle Scholar
Ramírez-Mejía, AF (2017) MSc dissertation: Diversidad funcional, taxonómica y dispersión de semillas por murciélagos filostómidos en un paisaje antropizado: un análisis multi-escal. Pontificia Universidad Javeriana, Bogotá - Colombia. 89 pp.Google Scholar
Ramírez-Mejía, AF, Urbina-Cardona, JN and Sánchez, F (2020) Functional diversity of phyllostomid bats in an urban–rural landscape: A scale-dependent analysis. Biotropica 52, 11681182.CrossRefGoogle Scholar
Rangel, C, Lowy, PD and Aguilar, M (1997) Colombia. Diversidad Biótica II. Tipos de vegetación en Colombia. Ed. Guadalupe Ltda. Universidad Nacional de Colombia. Bogotá.Google Scholar
R Core Team (2021) R: A language and environment for statistical computing. Version 4.1.0Google Scholar
Rhodes, JR, McAlpine, C A, Zuur, AF, Smith, GM and Ieno, EN (2009) GLMM Applied on the Spatial Distribution of Koalas in a Fragmented Landscape. In Zuur, AF, Ieno, EN, Walker, NJ, Saveliev, AA and Smith, GM (eds.), Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. New York: Springer. pp. 469492.CrossRefGoogle Scholar
Romero-Ruiz, MH, Flantua, SGA, Tansey, K and Berrio, JC (2012) Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography 32, 766776. Elsevier Ltd.CrossRefGoogle Scholar
Rowse, EG, Lewanzik, D, Stone, EL, Harris, S and Jones, G (2016) Dark matters: the effects of artificial lighting on bats. In Voigt, CC and Kingston, T (eds.) Bats in the anthropocene: conservation of bats in a changing world. Cham, Heidelberg, New York, Dordrecht, London: Springer. pp. 187214.CrossRefGoogle Scholar
Saldaña-Vázquez, RA and Schondube, JE (2016) La masa corporal explica la dominancia de Artibeus (Phyllostomidae) en ambientes urbanos. Memorias en Extenso del I Congreso de Fauna Nativa en Medios Antropizados, 2333.Google Scholar
Saldaña-Vázquez, RA, Sosa, VJ, Iñiguez-Dávalos, LI and Schondube, JE (2013) The role of extrinsic and intrinsic factors in Neotropical fruit bat-plant interactions. Journal of Mammalogy 94, 632639.CrossRefGoogle Scholar
Sánchez-Cuervo, AM, Aide, TM, Clark, ML and Etter, A (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS ONE 7.CrossRefGoogle ScholarPubMed
Snell-Rood, EC and Wick, N (2013) Anthropogenic environments exert variable selection on cranial capacity in mammals. Proceedings of the Royal Society B: Biological Sciences 280.Google ScholarPubMed
Soriano, PJ (2000) Functional structure of bat communities in tropical rainforests and Andean cloud forests. Ecotropicos 13, 120.Google Scholar
Spix, JD (1823) Simiarum et vespertilionum brasiliensium species novae, ou histoire naturelle des especes nouvelles de singes et de chauves-souris observees et recueillies pendant le voyage dans I’interieur du Bresil execute par ordre de S.M. Ie Roi de Baviere dans les. Monachii, Typis Francisci Seraphici Hübschmanni 4.CrossRefGoogle Scholar
Stevens, RD, Johnson, ME and Mcculloch, E (2016) Geographic variation of wing morphology of great fruit- eating bats (Artibeus lituratus): environmental, genetic and spatial correlates of phenotypic differences. Biological Journal of the Linnean Society 118, 734744.CrossRefGoogle Scholar
Stockwell, EF (2001) Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera : Phyllostomidae). Journal of Zoology, London 254, 505514.CrossRefGoogle Scholar
Strubbe, D, Salleh Hudin, N, Teyssier, A, Vantieghem, P, Aerts, J and Lens, L (2020) Phenotypic signatures of urbanization are scale-dependent: A multi-trait study on a classic urban exploiter. Landscape and Urban Planning 197, 103767. Elsevier.CrossRefGoogle Scholar
Tomassini, A, Colangelo, P, Agnelli, P, Jones, G and Russo, D (2014) Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: A response to changing climate or urbanization? Journal of Biogeography 41, 944953.CrossRefGoogle Scholar
Torres, JM, Dos Anjos, EAC and Ferreira, CMM (2018) Frugivoria por morcegos filostomídeos (Chiroptera, Phyllostomidae) em dois remanescentes urbanos de cerrado em campo grande, mato grosso do sul. Iheringia - Serie Zoologia 108.CrossRefGoogle Scholar
Trevelin, LC, Silveira, M, Port-Carvalho, M, Homem, DH and Cruz-Neto, AP (2013) Use of space by frugivorous bats (Chiroptera: Phyllostomidae) in a restored Atlantic forest fragment in Brazil. Forest Ecology and Management 291, 136143.CrossRefGoogle Scholar
Wainwright, PC and Reilly, SM (1994) Ecological morphology: integrative organismal biology. University of Chicago Press. 376 pp.Google Scholar
Wickham, H (2016) ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
Wickham, H, François, R, Henry, L and Müller, K (2020) dplyr: A Grammar of Data Manipulation. R package version 0.8.5. https://CRAN.R-project.org/package=dplyr Google Scholar
Wilke, CO (2019) cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9.4.Google Scholar
Winter, Y (1999) Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging. Journal of Experimental Biology 202, 19171930.CrossRefGoogle ScholarPubMed
Wordley, CFR, Sankaran, M, Mudappa, D and Altringham, JD (2017) Bats in the Ghats: agricultural intensification reduces functional diversity and increases trait filtering in a biodiversity hotspot in India. Biological Conservation 210, 4855.CrossRefGoogle Scholar
Zuur, AF, Ieno, EN, Walker, NJ, Saveliev, AA and Smith, GM (2009) GLMM and GAM. Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. New York: Springer. pp. 323341.CrossRefGoogle Scholar
Supplementary material: PDF

Ramírez-Mejía et al. supplementary material

Ramírez-Mejía et al. supplementary material

Download Ramírez-Mejía et al. supplementary material(PDF)
PDF 436.8 KB