Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:42:44.978Z Has data issue: false hasContentIssue false

Variability in epibiont colonization of shells of Fusitriton magellanicus (Gastropoda) on the Argentinean shelf

Published online by Cambridge University Press:  27 September 2010

Laura Schejter*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo 1, 7600, Mar del Plata, Buenos Aires, Argentina
Mariana Escolar
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo 1, 7600, Mar del Plata, Buenos Aires, Argentina
Claudia Bremec
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo 1, 7600, Mar del Plata, Buenos Aires, Argentina
*
Correspondence should be addressed to: L. Schejter, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo 1, 7600, Mar del Plata, Buenos Aires, Argentina email: schejter@inidep.edu.ar

Abstract

An inventory of the main epibiont organisms on living specimens, on empty shells and on pagurized shells of Fusitriton magellanicus collected in Zygochlamys patagonica fishing grounds off Argentina is provided here. Additionally, considering that the presence of the thick, hairy periostracum could be an inhibitor of boring and encrusting species, we analyse the presence of a periostracum in living F. magellanicus in relation to the presence of epibionts. More than 70% of all shells bore encrusting organisms (of at least 30 taxa) but only a small proportion of shells was heavily fouled, the majority of living, empty and pagurized shells being lightly or moderately fouled. Polychaetes were the most common epibiont group (present on more than 60% of shells) while sponges and ascidians were responsible for the majority of the heavily fouled living gastropods. In general, specimens had a moderate level of encrustation and, simultaneously, a low or medium coating of periostracum. Hairy gastropods (only 14% of the sampled specimens) had few or no epibionts. A relationship between the size of the shell and the level of encrustation was only found in living gastropods. Fusitriton magellanicus is the second species in importance (after the Patagonian scallop) for the provision of a hard settlement substrate in the shelf-break frontal area of the Argentine Sea.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acha, E.M., Mianzan, H.W., Guerrero, R.A., Favero, M. and Bava, J. (2004) Marine fronts at the continental shelves of austral South America. Physical and ecological processes. Journal of Marine Systems 44, 83105.CrossRefGoogle Scholar
Ananda Kumar, S. and Ayyakkannu, K. (1991) Periostracum of the gastropod Hemifusus pugilinus: natural inhibitor of boring and encrusting organisms. Journal of the Biological Association of India 33, 374378.Google Scholar
Bloom, S.A. (1975) The motile escape response of a sessile prey: a sponge–scallop mutualism. Journal of Experimental Marine Biology and Ecology 17, 311321.CrossRefGoogle Scholar
Bottjer, D.J. (1981) Periostracum of the gastropod Fusitriton oregonensis: natural inhibitor of boring and encrusting organisms. Bulletin of Marine Science 31, 916921.Google Scholar
Bottjer, D.J. and Carter, J.G. (1980) Functional and phylogenetic significance of projecting periostracal structures in the Bivalvia (Mollusca). Journal of Paleontology 54, 200216.Google Scholar
Botto, F., Bremec, C., Marecos, A., Schejter, L., Lasta, M. and Iribarne, O. (2006) Identifying predators of the SW Atlantic Patagonian scallop Zygochlamys patagonica using stable isotopes. Fisheries Research 81, 4550.CrossRefGoogle Scholar
Bremec, C., Marecos, A., Schejter, L. and Lasta, M. (2003) Guía Técnica para la identificación de invertebrados epibentónicos asociados a los bancos de vieira patagónica (Zygochlamys patagonica) en el Mar Argentino. Publicaciones Especiales INIDEP, Mar del Plata, 28 pp.Google Scholar
Bremec, C.S. and Lasta, M.L. (2002) Epibenthic assemblage associated with scallop (Zygochlamys patagonica) beds in the Argentine shelf. Bulletin of Marine Science 70, 89105.Google Scholar
Burns, D.O. and Bingham, B.L. (2002) Epibiotic sponges on the scallops Chlamys hastata and Chlamys rubida: increased survival in a high-sediment environment. Journal of the Marine Biological Association of the United Kingdom 82, 961966.CrossRefGoogle Scholar
Carcelles, A.R. (1954) Especies sudamericanas de Argobuccinum Bruguière 1792. Comunicaciones del Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciencias Zoológicas 2, 243254.Google Scholar
Cernohorsky, W.A. (1977) The taxonomy of some southern ocean Mollusca (Gastropoda) mainly Antarctic and Subantarctic. Records of the Auckland Institute and Museum 14, 105119.Google Scholar
Chernoff, H. (1987) Factors affecting mortality of the scallop Chlamys asperrima (Lamarck) and its epizoic sponges in South Australian waters. Journal of Experimental Marine Biology and Ecology 109, 155171.CrossRefGoogle Scholar
Clark, K. (1971) Host texture preference of an ectoparasitic opistobranch, Odostomia columbiana Dall & Bartsch, 1999. Veliger 14, 5456.Google Scholar
Corriero, G. and Pronzato, R. (1987) Epibiontic sponges on the bivalve Pinna nobilis. Marine Ecology Progress Series 35, 7582.CrossRefGoogle Scholar
Corriero, G., Pronzato, R. and Sarà, M. (1991) The sponge fauna associated with Arca noae L. (Mollusca, Bivalvia). In Reitner, J. and Keupp, H. (eds) Fossil and Recent sponges. Berlin: Springer-Verlag, pp. 395403.CrossRefGoogle Scholar
Forester, A.J. (1979) The association between the sponge Halichondria panicea (Pallas) and the scallop Chlamys varia (L.): a commensal–protective mutualism. Journal of Experimental Marine Biology and Ecology 36, 110.CrossRefGoogle Scholar
Hartman, W.D. and Hubbard, R. (1999) A new species of Thrombus (Porifera: Demospongiae: Astrophorida) from Trinidad, West Indies. Bulletin of Marine Science 64, 18.Google Scholar
Iyengar, E.V., Sitvarin, M.I. and Cataldo, M. (2008) Function of the flexible periostracal hairs in Trichotropis cancellata (Mollusca: Gastropoda). Invertebrate Biology 127, 299313.CrossRefGoogle Scholar
López Gappa, J. and Landoni, N.A. (2009) Space utilisation patterns of bryozoans on the Patagonian scallop Psychrochlamys patagonica. Scientia Marina 73, 161171.Google Scholar
Marín, A. and López Belluga, M.A. (2005) Sponge coating decreases predation on the bivalve Arca noae. Journal of Molluscan Studies 71, 16.CrossRefGoogle Scholar
Pansini, M., Cattaneo-Vietti, R. and Shiaparelli, S. (1999) Relationship between sponges and a taxon of obligatory inquilines: the siliquariid mollusks. Memoirs of the Queensland Museum 44, 427437.Google Scholar
Sandford, F. (1995) Sponge/shell switching by hermit crabs, Pagurus impressus. Invertebrate Biology 114, 7378.CrossRefGoogle Scholar
Sandford, F. (2001) Shared use of a single hermit crab sponge by two individual Pagurus impressus. Bulletin of Marine Science 69, 12391242.Google Scholar
Sandford, F. and Brown, C. (1997) Gastropod shell substrates of the Florida hermit crab sponge, Spongosorites suberitoides, from the Gulf of Mexico. Bulletin of Marine Science 61, 215223.Google Scholar
Scanland, T.B. (1979) The epibiota of Arca zebra and Arca imbricata: a community analysis. Veliger 21, 475485.Google Scholar
Schejter, L. and Bremec, C. (2007) Benthic richness in the Argentine continental shelf: the role of Zygochlamys patagonica (Mollusca: Bivalvia: Pectinidae) as settlement substrate. Journal of the Marine Biological Association of the United Kingdom 87, 917925.CrossRefGoogle Scholar
Schejter, L. and Bremec, C. (2009) Epibiosis contest at Zygochlamys patagonica fishing grounds: which is the winner? 17th International Pectinid Workshop, Santiago de Compostela, España, 22–28 April 2009, pp. 143144.Google Scholar
Schejter, L., Calcinai, B., Cerrano, C., Bertolino, M., Pansini, M., Giberto, D. and Bremec, C. (2006) Porifera from the Argentine Sea: diversity in Patagonian scallop beds. Italian Journal of Zoology 73, 373385.CrossRefGoogle Scholar
Schejter, L. and Mantelatto, F.L. (2010) Shelter association between the hermit crab Sympagurus dimorphus (Studer, 1883) and the zoanthid Epizoanthus paguricola in Southwestern Atlantic Ocean. Acta Zoologica. doi: 10.1111/j.1463-6395.2009.00440.xGoogle Scholar
Smith, J.T. (1970) Taxonomy, distribution and phylogeny of the cymatiid gastropods Argobuccinum, Fusitriton, Mediargo and Priene. Bulletin of American Paleontology 56, 445574.Google Scholar
Smyth, M. (1990) Incidence of boring organisms in gastropod shells on reefs around Guam. Bulletin of Marine Science 46, 432449.Google Scholar
van Soest, R.W.M. (1993) Distribution of sponges on the Mauritanian continental shelf. Hydrobiologia 258, 95106.CrossRefGoogle Scholar
Stefaniak, L.M., McAtee, J. and Shulman, M.J. (2005) The costs of being bored: effects of a clionid sponge on the gastropod Littorina littorea (L). Journal of Experimental Marine Biology and Ecology 327, 103114.CrossRefGoogle Scholar
Wahl, M. (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology Progress Series 58, 175189.CrossRefGoogle Scholar
Ward, M.A. and Thorpe, J.P. (1991) Distribution of encrusting bryozoans and other epifauna on the subtidal bivalve Chlamys opercularis. Marine Biology 110, 253259.CrossRefGoogle Scholar
Watanabe, N. (1988) Shell structure. In Trueman, E.R. and Clarke, M.R. (eds) The Mollusca. Volume 11. Form and function. San Diego, CA: Academic Press, pp. 69104.Google Scholar
Wulff, J.L. (2006) Ecological interactions of marine sponges. Canadian Journal of Zoology 84, 146166.CrossRefGoogle Scholar
Zar, J.H. (1996) Biostatistical analysis. Englewood Cliffs, NJ: Prentice-Hall, 662 pp.Google Scholar