Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:18:40.092Z Has data issue: false hasContentIssue false

Taxonomic Descriptions of Some Conspicuous Species of Strobilidiine Ciliates (Ciliophora: Choreotrichida) from the Isles of Shoals, Gulf of Maine

Published online by Cambridge University Press:  11 May 2009

D. H. Lynn*
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, Canada NIG 2W1
D. J. S. Montagnes
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, Canada NIG 2W1
*
*To whom correspondence should be addressed.

Extract

The marine plankton contains an extremely diverse assemblage of ciliates which may be important in planktonic energy flow (e.g. see Burkill et al. 1987; Porter et al. 1985; Rassoulzadegan & Sheldon, 1986; Sherr & Sherr, 1987; Stoecker, Michaels & Davis, 1987; Verity, 1987). Many marine ciliates are delicate in nature and until recently have been poorly collected. Thus, they are often entirely missed in plankton sampling. During an investigation of the role of planktonic ciliates at the Isles of Shoals, Gulf of Maine (Montagnes & Lynn, 1988; Montagnes, Lynn, Roff & Taylor, 1988) samples were Bouin-fixed to preserve these delicate species. The ciliates were subsequently quantitatively protargol silver-stained to estimate species abundances and biomass (Montagnes & Lynn, 1987). This staining method, in addition to providing quantitative estimates of abundance and cell volume, gives invaluable taxonomic information by revealing cellular structures. Thus, it has been possible to compare the ciliates from the Gulf of Maine with described species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antipa, G. A. & Small, E. B., 1971. A redescription of Conchophthirus curtus Engelmann, 1862 (Protozoa, Ciliatea). Journal of Protozoology, 18, 491503.CrossRefGoogle Scholar
Burkill, P. H., Mantoura, R. F. C., Llewellyn, C. A. & Owens, N. J. P., 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine Biology, 93, 581590.CrossRefGoogle Scholar
Corliss, J. O., 1979. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature, 2nd ed.London: Pergamon Press.Google Scholar
Dale, T. & Small, E. B., 1980. Marine and estuarine strobilidiid oligotrich ciliates studied with protargol. Journal of Protozoology, 27, supplement, 16 A.Google Scholar
Deroux, G., 1974. Quelques précisions sur Strobilidium gyrans Schewiakoff. Cahiers de biologie marine, 15, 571588.Google Scholar
Fauré-Fremiet, E., 1969. Remarques sur la systématique de ciliés Oligotrichida. Protistologica, 5, 345352.Google Scholar
Fernandez-Leborans, G., 1983. Nouvelles observations sur les deux ciliés oligotriches:Halteria grandinella (la morphologie et morphogénèse) et Strobilidium gyrans (la morphologie). Acta protozoologica, 22, 251256.Google Scholar
Gran, H. H., 1919. Quantitative investigations as to phytoplankton and pelagic protozoa in the Gulf of St. Lawrence and outside the same. In Canadian Fisheries Expedition, 1914–1915, pp. 489495. Canada: Department of the Naval Service.Google Scholar
Grim, J. N., 1987. The kinetid structures of the choreotrichous ciliate Strobilidium velox and an assessment of its evolutionary lineage. Journal of Protozoology, 34, 117123.CrossRefGoogle Scholar
Grim, J. N. & Halcrow, K. R., 1979. The oligotrich ciliate Strobilidium gyrans: its fresh-water environment, laboratory culture conditions, and stalking behavior. Transactions of the American Microscopical Society, 98, 529536.CrossRefGoogle Scholar
Ibanez, F. & Rassoulzadegan, F., 1977. A study of the relationships between pelagic ciliates (Oligotrichina) and planktonic nanoflagellates of the neritic ecosystem of the Bay of Villefranche-sur-Mer. Analysis of chronological series. Annales de l'Institut océanographique, 53, 1730.Google Scholar
Jonsson, P. R., 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Marine Ecology - Progress Series, 33, 265277.CrossRefGoogle Scholar
Kahl, A., 1932. Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Infusoria). 3. Spirotricha. Tierwelt Deutschlands und der angrenzenden Meeresteile, 25, 399650.Google Scholar
Leegaard, C., 1915. Untersuchungen uber einige Planktonciliaten des Meeres. Nytt magazin for naturvidenskaberne, 53, 137.Google Scholar
Lynn, D. H. & Berger, J., 1973. The Thyrophylacidae, a family of carnivorous philasterine ciliates entocommensal in strongylocentrotid echinoids. Transactions of the American Microscopical Society, 92, 533557.CrossRefGoogle Scholar
Lynn, D. H., Montagnes, D. J. S. & Small, E. B., 1988. Taxonomic descriptions of some conspicuous species in the family Strombidiidae (Ciliophora: Oligotrichida) from the Isles of Shoals, Gulf of Maine. Journal of the Marine Biological Association of the United Kingdom, 68, 259276.CrossRefGoogle Scholar
Maeda, M., 1986. An illustrated guide to the species of the families Halteriidae and Strobilidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bulletin of the Ocean Research Institute, University of Tokyo, no. 21, 67 pp.Google Scholar
Montagnes, D. J. S. & Lynn, D. H., 1987. A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Marine Microbial Food Webs, 2, 8393.Google Scholar
Montagnes, D. J. S. & Lynn, D. H., 1988. The annual cycle of Mesodinium rubrum in the waters surrounding the Isles of Shoals, Gulf of Maine. Journal of Plankton Research, in press.CrossRefGoogle Scholar
Montagnes, D. J. S., Lynn, D. H., Roff, J. C. & Taylor, W. D., 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology, in press.CrossRefGoogle Scholar
Montagnes, D. J. S., Lynn, D. H., Stoecker, D. K. & Small, E. B., 1988. Taxonomic descriptions of one new species and redescriptions of four species in the family Strombidiidae (Ciliophora, Oligotrichida). Journal of Protozoology, 35, 189197.CrossRefGoogle Scholar
Paranjape, M. A., Conover, R. J., Harding, G. C. & Prouse, N. J., 1985. Micro- and macrozooplankton on the Nova Scotian shelf in the prespring bloom period: a comparison of their potential resource utilization. Canadian Journal of Fisheries and Aquatic Sciences, 42, 14841492.CrossRefGoogle Scholar
Porter, K. G., Sherr, E. B., Sherr, B. F., Pace, M. L. & Sanders, R. W., 1985. Protozoa in planktonic food webs. Journal of Protozoology, 32, 409415.CrossRefGoogle Scholar
Rassoulzadegan, F., 1982. Dependence of grazing rate, gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg., fed on naturally occurring paniculate matter. Annales de l'Institut océanographique, 58, 177184.Google Scholar
Rassoulzadegan, F. & Sheldon, R. W., 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnology and Oceanography, 31, 10101021.CrossRefGoogle Scholar
Revelante, N. & Gilmartin, M., 1983. Microzooplankton distribution in the northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoans. Oceanologica acta, 6, 407415.Google Scholar
Sheldon, R. W., Nival, P. & Rassoulzadegan, F., 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnology and Oceanography, 31, 184188.CrossRefGoogle Scholar
Sherr, E. B. & Sherr, B. F., 1987. High rates of consumption of bacteria by pelagic ciliates. Nature, London, 325, 710711.CrossRefGoogle Scholar
Small, E. B. & Lynn, D. H., 1985. Phylum Ciliophora. In An Illustrated Guide to the Protozoa (ed. Lee, J. J., Hutner, S. H. and Bovee, E. C.), pp. 393575. Lawrence: Society of Protozoologists.Google Scholar
Smetacek, V., 1981. The annual cycle of the protozooplankton in the Kiel Bight. Marine Biology, 63, 111.CrossRefGoogle Scholar
Smetacek, V., 1984. Growth dynamics of a common Baltic protozooplankter: the ciliate genus Lohmanniella. Limnologica, Berlin, 15, 371376.Google Scholar
Smetacek, V., Bodungen, B. Von, Knoppers, B., Neubert, H., Pollehne, F. & Zeitzschel, B., 1980. Shipboard experiments on the effect of vertical mixing on natural plankton populations in the central Baltic Sea. Ophelia, 1, supplement, 7798.Google Scholar
Stoecker, D. K., Michaels, A. E. & Davis, L. H., 1987. Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature, London, 326, 790792.CrossRefGoogle Scholar
Takahashi, M. & Hoskins, K. D., 1978. Winter condition of marine plankton populations in Saanich Inlet, B. C., Canada. II. Microzooplankton. Journal of Experimental Marine Biology and Ecology, 32, 2737.CrossRefGoogle Scholar
Taniguchi, A., 1984. Microzooplankton biomass in the arctic and subarctic Pacific Ocean in summer. Memoirs of National Institute of Polar Research, Tokyo, special issue no. 32, 6376.Google Scholar
Verity, P. G., 1987. Abundance, community composition, size distribution, and production rates of tintinnids in Narragansett Bay, Rhode Island. Estuarine, Coastal and Shelf Science, 24, 671690.CrossRefGoogle Scholar