Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T21:30:47.641Z Has data issue: false hasContentIssue false

Some observations on concentrically structured, intracellular granules in the hepatopancreas of the shore crab Carcinus maenas (L.)

Published online by Cambridge University Press:  11 May 2009

S. P. Hopkin
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd
J. A. Nott
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd

Extract

The R, F and B cells of the hepatopancreas of Carcinus maenas are derived from undifferentiated (E) cells at the distal end of the tubules. Observations with the scanning electron microscope on freeze fractured tubules show that (a) most of the concentrically structured granules are confined to the R cells with few in F or B cells, (b) within individual R cells, granules are of similar size, and (c) the further R cells are situated from the distal end of the tubule, the greater is the mean diameter of the granules that they contain.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, P. L. & Gibson, R., 1977. Observations on the feeding mechanism, structure of the gut and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae). Journal of Experimental Marine Biology and Ecology, 26, 297324.Google Scholar
Barker, P. L. & Gibson, R., 1978. Observations on the structure of the mouthparts, histology of the alimentary tract and digestive physiology of the mud crab Scylla serrata (Forsk˚al) (Decapoda: Portunidae). Journal ofExperimental Marine Biology and Ecology, 32,177196.CrossRefGoogle Scholar
Becker, G. L., Chen, C.H, Greenawalt, J. W. & Lehninger, A. L., 1974. Calcium phosphate granules in the hepatopancreas of the blue crab Callinectes sapidus. Journal of Cell Biology, 61, 316326.Google Scholar
Bunt, A. H., 1968. An ultrastructural study of the hepatopancreas of Procambarus clarkii (Girard)(Decapoda: Astacidea). Crustaceana, 15, 282288.CrossRefGoogle Scholar
Chapelle, S., 1977. Lipid composition of tissues of marine crustaceans. Biochemical Systematics and Ecology, 5, 241248.CrossRefGoogle Scholar
Coombs, T. L. & George, S. G., 1978. Mechanisms of immobilization and detoxification of metals in marine organisms. In Proceedings of the 12th European Symposium on Marine Biology, Stirling, Scotland, 1977 (ed. McLusky, D. S. and Berry, A. J.), pp. 179187. Pergamon Press.Google Scholar
Humbert, W., 1978. Cytochemistry and X-ray microprobe analysis of the midgut of Tomocerus minor Lubbock (Insecta: Collembola) with special reference to the physiological significance of the mineral concretions. Cell and Tissue Research, 187, 397416.CrossRefGoogle Scholar
Humbert, W., 1979. The midgut of Tomocerus minor Lubbock (Insecta: Collembola): ultrastructure, cytochemistry, ageing and renewal during a moulting cycle. Cell and Tissue Research, 196, 3957.Google Scholar
Jacobs, W., 1928. Untersuchungen über die Cytologie der Sekretbildung in der Mitteldarmdrüse von Astacus leptodactylus. Zeitschrift für Zellforschung und mikroskopische Anatomie, 8, 162.CrossRefGoogle Scholar
Jenkins, T., Erasmus, D. A. & Davies, T. W., 1977. Trichuris suis and T. muris: elemental analysis of intestinal inclusions. Experimental Parasitology, 41, 464471.CrossRefGoogle Scholar
Loizzi, R. F., 1971. Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Zeitschrift für Zellforschung und mikroskopische Anatomie, 113, 420440.CrossRefGoogle ScholarPubMed
Nott, J. A. & Parkes, K. R., 1975. Calcium accumulation and secretion in the serpulid polychaete Spirorbis spirorbis L. at settlement. Journal of the Marine Biological Association of the United Kingdom, 55, 911923.CrossRefGoogle Scholar
Simkiss, K., 1976. Intracellular and extracellular routes in biomineralization. Symposia of the Society for Experimental Biology, no. 30, 423444.Google Scholar
Simkiss, K., 1977. Biomineralization and detoxification. Calcified Tissue Research, 24,199200.Google Scholar
Sminia, T., De With, N. D., Bos, J. L., Nieuwmegen, M. E. Van, Witter, M. P. & Wondergem, J., 1977. Structure and function of the calcium cells of the fresh water pulmonate snail Lymnaea stagnalis. Netherlands Journal of Zoology, 27, 195208.Google Scholar
Stanier, J. E., Woodhouse, M. A. & Griffin, R. L., 1968. The fine structure of the hepatopancreas of Carcinus maenas (L.) (Decapoda: Brachyura). Crustaceana, 14, 5666.Google Scholar
Walker, G., Rainbow, P. S., Foster, P. & Crisp, D. J., 1975a. Barnacles: possible indicators of zinc pollution? Marine Biology, 30, 5765.Google Scholar
Walker, G., Rainbow, P. S., Foster, P. & Holland, D. L., 1975b. Zinc phosphate granules in tissue surrounding the midgut of the barnacle Balanus balanoides. Marine Biology, 33, 161166.Google Scholar
Warner, G. F., 1977. The Biology of Crabs. xv, 202 pp. London: Paul Elek.Google Scholar