Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T20:05:15.763Z Has data issue: false hasContentIssue false

Phenotypic variation of south-western Atlantic clam Mactra isabelleana (Bivalvia: Mactridae)

Published online by Cambridge University Press:  22 May 2012

Javier H. Signorelli*
Affiliation:
Biología y Manejo de Recursos Acuáticos–CENPAT–CONICET, Bvd. Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
Federico Márquez
Affiliation:
Biología y Manejo de Recursos Acuáticos–CENPAT–CONICET, Bvd. Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina Universidad Nacional de la Patagonia San Juan Bosco. Bvd. Brown 3100, U9120ACD Puerto Madryn, Chubut, Argentina
Guido Pastorino
Affiliation:
Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia', Avenida Ángel Gallardo 470 C1405DJR, Ciudad de Buenos Aires, Argentina
*
Correspondence should be addressed to: J.H. Signorelli, Biología y Manejo de Recursos Acuáticos–CENPAT–CONICET, Bvd. Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina email: jsignorelli@cenpat.edu.ar

Abstract

The phenotypic shell shape variation of Mactra isabelleana was tested using the geometric morphometric method. Four localities were sampled along the Río de la Plata estuary and the coast of Buenos Aires province. Principal component analysis and canonical variates analysis of the first principal components were performed to reveal the shell variation and differences among localities, respectively. The specimens from different microhabitats mostly overlapped, although differences in shape were observed in the development of the umbo, the enlargement of the dorsoventral axes and the elongation of the posterior end. The ecological and physical parameters that could influence shell shape variation are discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerly, S. (1992) The structure of ontogenetic variation in the shell of Pecten . Palaeontology 34, 847867 Google Scholar
Adams, D.C., Rohlf, F.J. and Slice, D. (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71, 516.CrossRefGoogle Scholar
Aguirre, M.L., Perez, S.I. and Sirch, Y.N. (2006) Morphological variability of Brachidontes Swainson (Bivalvia, Mytilidae) in the marine Quaternary of Argentina (SW Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology 239, 100125.CrossRefGoogle Scholar
Beukema, J.J. and Meehan, B.W. (1985) Latitudinal variation in linear growth and other shell characteristics of Macoma balthica. Marine Biology 90, 2733 CrossRefGoogle Scholar
Bookstein, F.L. (1991) Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press.Google Scholar
Carranza, A. and Rodríguez, M. (2007) On the benthic molluscs of Banco Inglés (Río de la Plata, Uruguay). Animal Biodiversity and Conservation 30, 161168.CrossRefGoogle Scholar
Carvajal-Rodrıguez, P., Conde-Padín, P. and Rolán-Alvarez, E. (2005) Decomposing shell form into size and shape by geometric morphometric methods in two sympatric ecotypes of Littorina saxatilis . Journal of Molluscan Studies 71, 313318.CrossRefGoogle Scholar
Chiu, Y.W., Chen, H.C., Lee, S.C. and Chen, C.A. (2002) Morphometric analysis of shell and operculum variations in the viviparid snail, Cipangopaludina chinensis (Mollusca: Gastropoda), in Taiwan. Zoological Studies 41, 321331.Google Scholar
Claxton, W.T., Wilson, A.B., Mackie, G.L. and Boulding, E.G. (1998) A genetic and morphological comparison of shallow and deep-water populations of the introduced dreissenid bivalve Dreissena bugensis . Canadian Journal of Zoology 76, 12691276.CrossRefGoogle Scholar
Conde-Padín, P., Grahame, J.W. and Rolán-Alvarez, E. (2007) Detecting shape differences in species of the Littorina saxatilis complex by morphometric analysis. Journal of Molluscan Studies 73, 147154.CrossRefGoogle Scholar
Crampton, J.S. (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179186.CrossRefGoogle Scholar
Framiñan, M.B., Etala, M.P., Acha, E.M., Guerrero, R.A., Lasta, C.A. and Brown, O.B. (1999) Physical characteristics and processes of the Río de la Plata Estuary. In Perillo, G.M.E., Piccolo, M.C. and Pino Quivira, M. (eds) Estuaries of South America: their morphology and dynamics. Berlin: Springer, pp. 161194.CrossRefGoogle Scholar
Gaines, S.D., Gaylord, B., Gerber, L.R., Hastings, A. and Kinlan, B.P. (2007) Connecting places: the ecological consequences of dispersal in the sea. Oceanography 20, 9099.CrossRefGoogle Scholar
Gaspar, M.B., Santos, M.N., Vasconcelos, P. and Monteiro, C.C. (2002) Shell morphometric relationships of the most common bivalve species (Mollusca: Bivalvia) of the Algarve coast (southern Portugal). Hydrobiologia 477, 7380.CrossRefGoogle Scholar
Gordillo, S., Márquez, F., Cárdenas, J. and Zubimendia, M.A. (2011) Shell variability in Tawera gayi (Veneridae) from southern South America: a morphometric approach based on contour analysis. Journal of the Marine Biological Association of the United Kingdom 91, 815822.CrossRefGoogle Scholar
Gould, S.J. (1971) Muscular mechanics and the ontogeny of swimming in scallops. Palaeontology 14, 6194.Google Scholar
Guerrero, R.A., Acha, E.M., Framinan, M. and Lasta, C.A. (1997) Physical oceanography of the Río de la Plata Estuary, Argentina. Continental Shelf Research 17, 727742.CrossRefGoogle Scholar
Haeften, G.v., Scagliola, M., Comino, A.P. and Gonzalez, R. (2011) Marine sediment quality in Mar del Plata city sewage discharge area—period 1999–2007. In International Symposium on Outfall Systems, May 15–18, 2011, Mar del Plata, Argentina. [Abstract.]Google Scholar
Keen, A.M. (1969) Superfamily Mactracea Lamarck, 1809. In Moore, R.C. (ed.) Treatise on invertebrate paleontology. Part N. Mollusca 6, Bivalvia. Lawrence, KS: The Geological Society of America and University of Kansas Press, pp. N595610.Google Scholar
Klingenberg, C.P. (2008) MorphoJ. Faculty of Life Sciences, University of Manchester. Available at: www.flywings.org.uk/MorphoJ_guide/frameset.htm?index.htm (accessed 20 February 2012).Google Scholar
Krapivka, S., Toro, J.E., Alcapán, A.C., Astorga, M., Presa, P., Pérez, M. and Guiñez, R. (2007) Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupé 1854). Aquaculture Research 38, 17701777.CrossRefGoogle Scholar
Langerhans, R.B., Chapman, L.J. and Dewitt, T.J. (2007) Complex phenotype–environment associations revealed in an East African cyprinid. Journal of Evolutionary Biology 20, 11711181.CrossRefGoogle Scholar
Lopez, R.A., Penchaszadeh, P.E. and Marcomini, S.C. (2008) Storm-related strandings of mollusks on the northeast coast of Buenos Aires, Argentina. Journal of Coastal Research 24, 925935.CrossRefGoogle Scholar
Mahalanobis, P.C. (1948) Historical note on the D3-statistic. Sankhya 9, 237240.Google Scholar
Manuel, J.L. and Dadswell, M.J. (1993) Swimming of juvenile sea scallops, Placopecten magellanicus (Gmelin): a minimum size for effective swimming? Journal of Experimental Marine Biology and Ecology 174, 137175.CrossRefGoogle Scholar
Márquez, F. and Van der Molen, S. (2011) Intraspecific shell-shape variation in the razor clam Ensis macha along the Patagonian coast. Journal of Molluscan Studies 77, 123128.CrossRefGoogle Scholar
Márquez, F., Amoroso, R., Gowland Sainz, M.F. and Van der Molen, S. (2010a) Shell morphology changes in the scallop Aequipecten tehuelchus during its life span: a geometric morphometric approach. Aquatic Biology 11, 149155.CrossRefGoogle Scholar
Márquez, F., González-José, R. and Bigatti, G. (2011) Combined methods to detect pollution effects on shell shape and structure in neogastropods. Ecological Indicators 11, 248254.CrossRefGoogle Scholar
Márquez, F., Robledo, J., Escati Peñaloza, G. and Van der Molen, S. (2010b) Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in San José Gulf, Patagonia, Argentina. Fisheries Research 101, 127131.CrossRefGoogle Scholar
Mitteroecker, P. and Gunz, P. (2009) Advances in geometric morphometrics. Evolutionary Biology 36, 235247.CrossRefGoogle Scholar
Olabarría, C. and Thurston, M.H. (2004) Patterns of morphological variation of the deep-sea gastropod Troschelia berniciensis (King, 1846) (Buccinidae) from the northeastern Atlantic ocean. Journal of Molluscan Studies 70, 5966.CrossRefGoogle Scholar
Orbigny, A.D. de (1834–1847) Mollusques. In Bertrand, C.P. (ed.) Voyage dans l'Amérique Méridionale (Le Brésil, La République Orientale de L'Uruguay, La République Argentine, La Patagonie, La République du Chili, La République de Bolivia, La République du Pérou), exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833. Paris: Chez Ve. Levrault.Google Scholar
Palmer, M., Pons, G. X. and Linde, M. (2004) Discriminating between geographical groups of a Mediterranean commercial clam (Chamelea gallina (L.): Veneridae) by shape analysis. Fisheries Research 67, 9398.CrossRefGoogle Scholar
Rohlf, F.J. (1996) Morphometric spaces, shape components, and the effects of linear transformations. In Marcus, L.F., Corti, M., Loy, A., Naylor, G. and Slice, D.E. (eds) Advances in morphometrics. Proceedings of the 1993 NATO Advanced Studies Institute on Morphometrics. New York, USA and Ciocco, Italy: Plenum Publishing. [Abstract.].Google Scholar
Rohlf, F.J. and Marcus, L.F. (1993) A revolution in morphometrics. Trends in Ecology and Evolution 8, 129132 CrossRefGoogle Scholar
Rohlf, F.J. and Slice, D. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoololgy 39, 4059.CrossRefGoogle Scholar
Roopnarine, P., Signorelli, J.H. and Laumer, C. (2008) Systematic, biogeographic and microhabitat-based morphometric variation of the bivalve Anomalocardia squamosa (Bivalvia, Veneridae: Chioninae) in Thailand. Raffles Bulletin of Zoology 18 (Supplement), 95102.Google Scholar
Scarabino, F., Zaffaroni, J.C., Clavijo, C., Carranza, A. and Nin, M. (2006) Bivalvos marinos y estuarinos de la costa uruguaya: faunística, distribución, taxonomía y conservación. In Menafra, R., Rodríguez-Gallego, L., Scarabino, F. and Conde, D. (eds) Bases para la Conservación y el manejo de la costa Uruguaya. Montevideo: Vida Silvestre Uruguay, pp. 157169.Google Scholar
Signorelli, J.H. and Pastorino, G. (2011) Revision of the Magellanic Mactridae Lamarck, 1809 (Bivalvia: Heterodonta). Zootaxa 2757, 4767.CrossRefGoogle Scholar
Signorelli, J.H. and Pastorino, G. (2012) A revision of the living Mactridae (Bivalvia: Autobranchia) from Northern Argentina and Uruguay. American Malacological Bulletin 30, 85101.CrossRefGoogle Scholar
Simionato, C.G., Meccia, V.L., Guerrero, R.A., Dragani, W.C. and Nuñez, M.N. (2007) The Río de la Plata estuary response to wind variability in synoptic to intra-seasonal scales: ii currents' vertical structure and its implications on the salt wedge structure. Journal of Geophysical Research 112, 115.CrossRefGoogle Scholar
Skelton, P.W. and Benton, M.J. (1993) Mollusca: Rostroconchia, Scaphopoda and Bivalvia. In Benton, M.J. (ed.) The fossil record. Volume 2. London: Chapman and Hall, pp. 237267.Google Scholar
Slice, D.E., Bookstein, F.L., Marcus, L.E. and Rohlf, F.J. (1996) Appendix I: a glossary for geometric morphometrics. In Marcus, L.E., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D. (eds) Advances in morphometrics. New York: Plenum Press, pp. 531551.Google Scholar
Sokal, R.R. and Rohlf, F.J. (1995) Biometry: the principles and practice of statistics in biological research. 4th edition. New York: W.H. Freeman & Co.Google Scholar
Stanley, S.M. (1970) Relation of shell form to life habitats in the Bivalvia (Mollusca). Memoirs of the Geological Society of America 125, 1296.CrossRefGoogle Scholar
Stramma, L. and Peterson, R.G. (1990) The South Atlantic Current. Journal of Physical Oceanography 20, 846859.2.0.CO;2>CrossRefGoogle Scholar
Teso, V., Signorelli, J.H. and Pastorino, G. (2011) Shell phenotypic variation in the south-western Atlantic gastropod Olivancillaria carcellesi (Mollusca: Olividae). Journal of the Marine Biological Association of the United Kingdom 91, 10891094.CrossRefGoogle Scholar
Ubukata, T. (2003) A morphometric study on morphological plasticity of shell form in crevice-dwelling Pterioida (Bivalvia). Biological Journal of the Linnean Society 79, 285297.CrossRefGoogle Scholar
Valdano, S.G. and Di Rienzo, J. (2007) Discovering meaningful groups in hierarchical cluster analysis. An extension to the multivariate case of a multiple comparison method based on cluster analysis. Inter Stat. Available from http://interstat.statjournals.net/YEAR/2007/abstracts/0704002.php?Name=704002 (accessed 20 February 2012).Google Scholar
Zelditch, M.L., Swiderski, D.L., Sheets, H.D. and Fink, W.L. (2004) Geometric morphometrics for biologists: a primer. New York: Elsevier.Google Scholar