Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:09:38.677Z Has data issue: false hasContentIssue false

Megrim (Lepidorhombus Whiff-Iagonis) Populations in the English Channel and Approaches—Lactate Dehydrogenase and Glycerol-3-Phosphate Dehydrogenase Polymorphisms

Published online by Cambridge University Press:  11 May 2009

P. R. Dando
Affiliation:
The Plymouth Laboratory

Extract

Two distinct forms of the megrim, Lepidorhombus whiff-iagonis (Walbaum), exist, a southern form which ranges from the Mediterranean to the British Isles and a northern form which ranges northwards from the north of Ireland and the North Sea (Richardson, 1860; Kyle, 1913; Furnstein, 1935; Dwivedi, 1964). Kyle and Richardson considered these forms to be separate species. The southern form of megrim extends into the English Channel with Start Point, 3° 40' W, the approximate eastern limit of its distribution (Cligny, 1905). However, this fish is common only at the western entrance of the Channel since it is abundant only in depths below loom (Dwivedi, 1964). Little is known of the separate megrim populations in the geographical range of the southern form. Studies of meristic characters indicate the existence of at least three populations, one in the Mediterranean and along the coast of Portugal, another in the Bay of Biscay and the third south of Ireland and in the entrance to the English Channel (Cligny, 1905; Dwivedi, 1964).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armitage, P., 1955. Tests for linear trends in proportions and frequencies. Biometrics, Vol. 11, pp. 375–86.CrossRefGoogle Scholar
Bartholomew, D. J., 1959. A test of homogeneity for ordered alternatives. Biometrika, Vol. 46, pp. 3648.CrossRefGoogle Scholar
Borley, J. O. & Thursby-Pelham, D. E., 1926. Distribution of the food fishes in the N. Sea during 1923 & 24. Fishery Invest., Lond., Ser. 2, Vol. 9, No. 4.Google Scholar
Boyer, S. H., Fainer, D. C. & Naughton, M. A., 1963. Myoglobin: inherited structural variation in man. Science, N.Y., Vol. 140, pp. 1228–31.CrossRefGoogle Scholar
Cligny, A., 1905. Poissons des côtes d'Espagne et du Portugal (Océan Atlantique), deuxieme partie. Annls Stn aquic. Boulogne, Vol. 1, pp. 6992.Google Scholar
Corbin, P. G., 1947. The spawning of mackerel, Scomber scombrus L., and pilchard, Clupea pilchardus Walbaum, in the Celtic Sea in 1937–1939. J. mar. biol. Ass. U.K., Vol. 27, pp. 65132.CrossRefGoogle Scholar
Dando, P. R., 1970. Lactate dehydrogenase polymorphism in the flatfish (Heterosomata)Rapp. P.-v. Réun., Cons. perm. int. Explor. Mer (in the Press).Google Scholar
Deal, W. C. & Holleman, W. H., 1964. Subunit structure of some glycolytic enzymes. Fedn Proc. Fedn Am. Socs exp. Biol., Vol. 23, 264.Google Scholar
Dwivedi, S. N., 1964. Ecologie, morphologie et biologie comparées des deux espèces du genre Lepidorhombus, L. megastoma (Donovan) et L. boscii (Risso). Étude de leurs races et populations. Rev. Trav. Off. (scient. tech.) Pêch. mark., T. 28, pp. 321–99.Google Scholar
Freeman, G. H. & Halton, J. H., 1951. Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika, Vol. 38, 141–9.CrossRefGoogle Scholar
Fulton, M. T., 1902–3. Report on the distribution and seasonal abundance of flatfishes (Pleuronectidae) in the North Sea. Rep. N. Sea Fish. Invest. Comm., Vol. 1, pp. 471618.Google Scholar
Furnstein, J., 1935. La Cardine. Résumé des connaissances acquises sur la biologie de ce poisson. Rev. Trav. Off. (scient. tech.) Pêch. marit., T. 8, pp. 203–49.Google Scholar
Greel, E. H., 1967. Electrophoretic variants of a-glycerophosphate dehydrogenase in Drosophila melanogaster. Science, N.Y., Vol. 158, pp. 1319–20.CrossRefGoogle Scholar
Hodgins, H. O., Ames, W. E. & Utter, F. M., 1969. Variants of lactate dehydrogenase isozymes in sera of sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd Can., Vol. 26, pp. 1519.CrossRefGoogle Scholar
Holt, E. W., 1891. Survey of fishing grounds, west coast of Ireland, 1890–1891. Reports on the scientific evidence bearing on the economic aspects of the fishes collected during the survey. Scient. Proc. R. Dubl. Soc., Vol. 7, pp. 388477.Google Scholar
Kyle, H. M., 1913. Flat-fishes (Heterosomata). Rep. Dan. oceanogr. Exped. Mediterr., Vol. 2 (A. 1).Google Scholar
Latner, A. L. & Skillen, A. W., 1961. Clinical applications of dehydrogenase isoenzymes. Lancet, 1961, ii, pp. 1286–8.CrossRefGoogle Scholar
Lewontin, R. C. & Felsenstein, J., 1964. The robustness of homogeneity tests in 2 x N tables. Biometrics, Vol. 21, pp. 1933.CrossRefGoogle Scholar
Lush, I. E., Cowey, C. B. & Knox, D., 1969. The lactate dehydrogenase isozymes of twelve species of flatfish (Heterosomata). J. exp. Z00L, Vol. 171, pp. 105–18.CrossRefGoogle ScholarPubMed
Markert, C. L. & Holmes, R. S., 1969. Lactate dehydrogenase isozymes of the flatfish, Pleuronectiformes: kinetic molecular and immunochemical analysis. J. exp. Z00L, Vol. 171, pp. 85104.CrossRefGoogle ScholarPubMed
Odense, P. H., Leung, T. C., Allen, T. M. & Parker, E., 1969. Multiple forms of lactate dehydrogenase in the cod, Gadus morhua L. Biochem. Genet., Vol. 3, pp. 317–34.CrossRefGoogle ScholarPubMed
Richardson, J. (ed.), 1860. The History of British Fishes by Yarrell, W., 2nd supplement. London: J. van Voorst.Google Scholar
Smithies, O., 1959. An improved procedure for starch-gel electrophoresis: further variations in the serum proteins of normal individuals. Biochem. J., Vol. 71. pp. 585–7.CrossRefGoogle ScholarPubMed
Wright, D. A. & Shaw, C. R., 1969. Genetics and ontogeny of a-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster. Biochem. Genet., Vol. 3, pp. 343–53.CrossRefGoogle Scholar