Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T21:45:01.103Z Has data issue: false hasContentIssue false

Lophelia Pertusa (L.): Electrical Conduction and Behaviour in a Deep-Water Coral

Published online by Cambridge University Press:  11 May 2009

G. A. B. Shelton
Affiliation:
Department of Zoology, South Parks Road, Oxford

Extract

Tropical reef corals have been studied extensively in the last hundred years from the geological, ecological and, more recently, from the behavioural and physiological points of view (e.g. Darwin, 1896; Vaughan & Wells, 1943; Wells, 1959; Jones & Endean, 1973, 1976; Horridge, 1957; Shelton, 1975 a, b; Anderson, 1976 a, b; Shelton & McFarlane, 1976 a, b; McFarlane, 1978). By contrast, little attention has been paid to the deep, cold water corals such as Lophelia pertusa (L.) although they are in many ways just as spectacular in appearance and secrete massive calcareous skeletons. Zibrowius (1976) gives some data on the occurrence of Lophelia and its nomenclature while Wilson (1979 a, b) describes its distribution in the north-east Atlantic and its development in ‘patches’ on Rockall Bank. This paper, however, provides the first descriptions of the behaviour and co-ordination of Lophelia and the electrical conduction mechanisms underlying their control. The results are compared with those from similar experiments upon tropical species. They give insights into colony growth and co-ordination and into possible primitive behavioural control mechanisms.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. A. V., 1976a. The electrophysiology of the organ-pipe coral Tubipora musica. Biological Bulletin. Marine Biological Laboratory, Woods Hole. Mass., 150, 337347.CrossRefGoogle ScholarPubMed
Anderson, P. A. V., 1976b. An electrophysiological study of mechanisms controlling polyp retraction in colonies of the scleractinian coral Goniopora lobata. Journal of Experimental Biology, 65, 381393.CrossRefGoogle ScholarPubMed
Chia, F-S., 1972. Note on the assimilation of glucose and glycine from seawater by the embryos of a sea anemone, Actinia equina. Canadian Journal of Zoology, 50, 13331334.CrossRefGoogle Scholar
Darwin, C., 1896. The Structure and Distribution of Coral Reefs. 549 pp. London: Frowde.CrossRefGoogle Scholar
Duerden, J. E., 1902. West Indian Madreporarian polyps. Memoirs of the National Academy of Sciences, 8, 399597.CrossRefGoogle Scholar
Goreau, T. F., Goreau, N. I. & Yonge, C. M., 1971. Reef corals: autotrophs or heterotrophs ? Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 141, 247260.Google Scholar
Horridge, G. A., 1957. The co-ordination of the protective retraction of coral polyps. Philosophical Transactions of the Royal Society (B), 240, 495529.Google Scholar
Jones, O. A. & Endean, R., 1973, 1976. Biology and Geology of Coral Reefs, vols 13. New York: Academic Press.Google Scholar
Josephson, R. K., 1966. Neuromuscular transmission in a sea anemone. Journal of Experimental Biology, 45, 305320.Google Scholar
Lang, J., 1971. Interspecific aggression by scleractinian corals. 1. The rediscovery of Scolymia cubensis (Milne Edwards & Haime). Bulletin of Marine Science, 21, 952959.Google Scholar
Lewis, J. B. & Price, W. S., 1975. Feeding mechanisms and feeding strategies of Atlantic reef corals. Journal of Zoology, 176, 527544.Google Scholar
Lewis, J. B. & Price, W. S., 1976. Patterns of ciliary currents in Atlantic reef corals and their functional significance. Journal of Zoology, 178, 7789.Google Scholar
Mcfarlane, I. D., 1969. Two slow conduction systems in the sea anemone Calliactis parasitica. Journal of Experimental Biology, 51, 377385.Google Scholar
Mcfarlane, I. D., 1978. Multiple conducting systems and the control of behaviour in the brain coral Meandrina meandrites (L.). Proceedings of the Royal Society (B), 200, 193216.Google Scholar
Pantin, C. F. A., 1935a. The nerve net of the Actinozoa. I. Facilitation. Journal of Experimental Biology, 12, 119138.Google Scholar
Pantin, C. F. A., 1935b. The nerve net of the Actinozoa. II. Plan of the nerve net. Journal of Experimental Biology, 12, 139155.Google Scholar
Pantin, C. F. S., 1935c. The nerve net of the Actinozoa. III. Polarity and after discharge. Journal of Experimental Biology 12, 156164.CrossRefGoogle Scholar
Parker, G. H., 1905., The reversal of the effective stroke of the labial cilia of sea-anemones by organic substances. American Journal of Physiology, 14, 16.CrossRefGoogle Scholar
Parker, G. H. & Marks, A. P., 1928. Ciliary reversal in the sea anemone Metridium. Journal of Experimental Zoology, 52, 16.CrossRefGoogle Scholar
Robson, E. A. & Josephson, R. K., 1969. Neuromuscular properties of mesenteries from the sea-anemone Metridium. Journal of Experimental Biology, 50, 151168.Google Scholar
Satterlie, R. A., & Case, J. F., 1979. Neurobiology of the gorgonian coelenterates, Muricea californica and Lophogorgia chilensis. I. Behavioural physiology. Journal of Experimental Biology, 79, 191204.Google Scholar
Shelton, G. A. B., 1975a. Electrical activity and colonial behaviour in anthozoan hard corals. Nature, London, 252, 558560.Google Scholar
Shelton, G. A. B., 1975b. Colonial behaviour and electrical activity in the Hexacorallia. Proceedings of the Royal Society (B), 190, 239256.Google Scholar
Shelton, G. A. B., 1975c. The transmission of impulses in the ectodermal slow conduction system of the sea anemone Calliactis parasitica (Couch). Journal of Experimental Biology, 62, 421432.CrossRefGoogle ScholarPubMed
Shelton, G. A. B., 1979. Co-ordination of behaviour in cnidarian colonies. In Biology and Systematics of Colonial Animals (ed. Larwood, G. and Rosen, B. R.), pp. 141154. Systematics Association Special Volume, no. 11. London: Academic Press.Google Scholar
Shelton, G. A. B., 1980a. Behaviour and electrical conduction systems in the solitary coral Caryophyllia smithii L. Journal of Experimental Biology. (In the Press.)Google Scholar
Shelton, G. A. B., 1980b. Electrical Conduction and Behaviour in ‘Simple’ Invertebrates. Oxford: Oxford University Press. (In the Press.)Google Scholar
Shelton, G. A. B. & Mcfarlane, I. D., 1976a. Electrophysiology of two parallel conducting systems in the colonial Hexacorallia. Proceedings of the Royal Society (B), 193, 7787.Google Scholar
Shelton, G. A. B. & Mcfarlane, I. D., 1976b. Slow conduction in solitary and colonial Anthozoa. In Coelenterate Ecology and Behaviour (ed. Mackie, G. O.), pp. 599607. New York: Plenum.Google Scholar
Squires, D. F., 1964. Fossil coral thickets in Wairarapa, New Zealand. Journal of Palaeontology, 38, 904915.Google Scholar
Tiffon, Y., 1975. Hydrolases dans l'ectoderme de Cerianthus lloydi Gosse, Cerianthus membranaceus Spallanzani et Metridium senile (L.) mise en evidence d'une digestion extracellulaire et extracorporelle. Journal of Experimental Marine Biology and Ecology, 18, 243254.CrossRefGoogle Scholar
Tiffon, Y. & Daireaux, M., 1974. Phagocytose et pinocytose par l'ectoderme et l'endoderme de Cerianthus lloydi Gosse. Journal of Experimental Marine Biology and Ecology, 16, 155165.CrossRefGoogle Scholar
Vaughan, T. W. & Wells, J. W., 1943. Revision of the Suborders, Families and Genera of the Scleractinia. 363 pp. Special paper no. 44 of the Geological Society of America. Baltimore.Google Scholar
Wells, J. W., 1959. Scleractinia. In Treatise on Invertebrate Paleontology, pt F, Coelenterata (ed. Moore, R. C.), pp. 328444. Kansas: Geological Society of America and University of Kansas Press.Google Scholar
Wilson, J. B., 1979a. The distribution of the coral Lophelia pertusa (L.)(L. prolifera (Pallas)) in the North-East Atlantic. Journal of the Marine Biological Association of the United Kingdom, 59, 149164.Google Scholar
Wilson, J. B., 1979b ‘Patch’ development of deep-water coral Lophelia pertusa (L.) on Rockall Bank. Journal of the Marine Biological Association of the UnitedKingdom, 59, 165177.CrossRefGoogle Scholar
Zibrowius, H., 1976. Les Scleractiniares de le Mediterranée et de I' Atlantique Nord-oriental. Thèse, Universitè d'Aix-Marseille, Centre National de la Recherche Scientifique, Archives originales 11515.Google Scholar