Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T07:12:26.427Z Has data issue: false hasContentIssue false

Lipid Changes During a Planktonic Feeding Sequence Involving Unicellular Algae, Elminius Nauplii and Adult Calanus

Published online by Cambridge University Press:  11 May 2009

A. C. Neal
Affiliation:
Organic Geochemistry Unit, University of Bristol, Cantock's Close, Bristol BS8 1TS
F. G. Prahl
Affiliation:
School of Oceanography, Oregon State University, Corvallis, OR 97331, U.S.A.
G. Eglinton
Affiliation:
Organic Geochemistry Unit, University of Bristol, Cantock's Close, Bristol BS8 1TS
S. C. M. O'Hara
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PLl 2PB
E. D. S. Corner
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PLl 2PB

Extract

Numerous studies have shown that only a small percentage of the organic carbon produced by photosynthesis in the upper layers of the oceans reaches the underlying sediments (see review by Angel, 1984). During intense phytoplankton blooms, plant cells could account for most of the organic carbon contributed to sediments in certain shallow inshore areas (Smetacek, 1980). Examination of the sediments from open ocean environments, however, indicates that the main contribution of organic carbon to these is in the form of faecal material released by zooplankton, for example salps (Iseki, 1981) and larger species of copepod (Schrader, 1971; Krause, 1981).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, M. V., 1984. Detrital organic fluxes through pelagic ecosystems. In Flows of Energy and Materials in Marine Ecosystems (ed. Fasham, M. J. R.), pp. 475516. New York: Plenum Press.Google Scholar
Arnaud, J., Brunet, M. & Mazza, J., 1980. Structure et ultrastructure comparées de l'intestin chez plusieurs espèces de copepodes calanoides (Crustacea). Zoomorphologie, 95 213233.Google Scholar
Gagosian, R. B., Nigrelli, G. E. & Volkman, J. K., 1983. Vertical transport and transformation of biogenic organic compounds from a sediment trap experiment off the coast of Peru. In Coastal Upwelling, Its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling (ed. Suess, E. and Thiede, J.), pp. 241272. New York: Plenum Press.Google Scholar
Gagosian, R. B., Smith, S. O. & Nigrelli, G. E., 1982. Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. Geochimica et cosmochimica acta, 46 11631172.Google Scholar
Hofmann, E. E., Klinck, J. M. & Paffenhöfer, G.-A., 1981. Concentrations and vertical fluxes of zooplankton fecal pellets on a continental shelf. Marine Biology, 61 327335.Google Scholar
Honjo, S., 1980. Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones. Journal of Marine Research, 38, 53—97.Google Scholar
Iseki, K., 1981. Paniculate organic matter transport to the deep sea by salp fecal pellets. Marine Ecology – Progress Series, 5 5560.Google Scholar
Krause, M., 1981. Vertical distribution of faecal pellets during FLEX ‘76. Helgoländer Meeresuntersuchungen, 34 313327.Google Scholar
Leeuw, J. W. DeRijpstra, W. I. C.Schenck, P. A. & Volkman, J. K., 1983. Free, esterified and residual bound sterols in Black Sea Unit I sediments. Geochimica et cosmochimica acta, 47 455465.Google Scholar
Neal, A. C., 1984. The Biogeochemical Significance of Copepod Feeding. Ph.D. Thesis, University of Bristol.Google Scholar
Nott, J. A., Corner, E. D. S., Mavin, L. J. & O'hara, S. C. M., 1985. Cyclical contributions of the digestive epithelium to faecal pellet formation by the copepod Calanus helgolandicus. Marine Biology, 89 271279.Google Scholar
Paffenhöfer, G. A. & Knowles, S. C., 1979. Ecological implications of fecal pellet size, production and consumption by copepods. Journal of Marine Research, 37 3549.Google Scholar
Paffenhöfer, G. A. & Strickland, J. D. H., 1970. A note on the feeding of Calanus helgolandicus on detritus. Marine Biology, 5 9799.Google Scholar
Prahl, F. G., Eglinton, G., Corner, E. D. S., O'hara, S. C. M. & Forsberg, T. E. V., 1984 a. Changes in plant lipids during passage through the gut of Calanus. Journal of the Marine Biological Association of the United Kingdom, 64 317334.Google Scholar
Prahl, F. G., Eglinton, G., Corner, E. D. S. & O'hara, S. C. M., 1984 b. Copepod fecal pellets as a source of dihydrophytol in marine sediments. Science, New York, 224 12351237.Google Scholar
Prahl, F. G., Eglinton, G., Corner, E. D. S. & O'hara, S. C. M., 1985. Faecal lipids released by fish feeding on zooplankton. Journal of the Marine Biological Association of the United Kingdom, 65 547560.Google Scholar
Robinson, N., Eglinton, G., Brassell, S. C. & Cranwell, P. A., 1984. Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature, London, 308 439441.Google Scholar
Schrader, H.-J., 1971. Fecal pellets: role in sedimentation of pelagic diatoms. Science, New York, 174 5557.Google Scholar
Silver, M. W. & Alldredge, A. L., 1981. Bathypelagic marine snow: deep-sea algal and detrital community. Journal of Marine Research, 39 501530.Google Scholar
Smetacek, V., 1980. Zooplankton standing stock, copepod faecal pellets and particulate detritus in Kiel Bight. Estuarine and Coastal Marine Science, 11 477490.Google Scholar
Tanoue, E., Handa, N. & Sakugawa, H., 1982. Difference of the chemical composition of organic matter between fecal pellet of Euphausia superba and its feed, Dunaliella tertiolecta. Transactions of the Tokyo University of Fisheries, 5 189196.Google Scholar
Volkman, J. K., Corner, E. D. S. & Eglinton, G., 1980. Transformations of biolipids in the marine food web and in underlying bottom sediments. In Colloques Internationaux du C.N.R.S. no. 293 – Biogéochemie de Matière Organique a I'Interface Eau-Sediment Marin, pp. 185197. Paris: Editions C.N.R.S.Google Scholar
Wakeham, S. G., 1982. Organic matter from a sediment trap experiment in the equatorial North Atlantic: wax esters, steryl esters, triacylglycerols, and alkyldiacylglycerols. Geochimica et cosmochimica acta, 46 22392257.Google Scholar
Wakeham, S. G., Farrington, J. W., Gagosian, R. B., Lee, C., Debaar, H., Nigrelli, G. E., Tripp, B. W., Smith, S. O. & Frew, N. M., 1980. Organic matter fluxes from sediment traps in the equatorial Atlantic Ocean. Nature, London, 286 798800.Google Scholar
Wakeham, S. G., Lee, C., Farrington, J. W. & Gagosian, R. B., 1984. Biogeochemistry of particulate matter in the oceans: results from sediment trap experiments. Deep-Sea Research, 31 509528.Google Scholar
Wright, J. L. C., 1979. The occurrence of ergosterol and (22E,24R)-24-ethylcholesta-5,7,22-trien-3β-ol in the unicellular chlorophyte Dunaliella tertiolecta. Canadian Journal of Chemistry, 57, 25692571.Google Scholar
Wright, J. L. C., 1981. Minor and trace sterols of Dunaliella tertiolecta. Phytochemistry, 20 24032405.Google Scholar