Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:43:17.424Z Has data issue: false hasContentIssue false

The Distribution and Ecology of the Interstitial Meiofauna of a Sandy Beach at Whitsand Bay, East Cornwall

Published online by Cambridge University Press:  11 May 2009

Roger P. Harris
Affiliation:
The Plymouth Laboratory

Extract

The interstitial meiofauna was investigated on an exposed sand beach at Whitsand Bay, Cornwall. An intertidal transect of eight stations was sampled regularly over a period of 2 years from May 1968 to May 1970. Quantitative core samples were taken to a depth of 50 cm. Nematodes were the dominant group on the beach, forming about 50% of the meiofauna. Harpacticoid copepods were second in overall abundance. Hydrozoa, turbellaria, gastrotrichs and tardigrades were also present.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amoureux, L. 1963. Etude des teneurs en oxygène dans les eaux interstitielles de l'Aber de Roscoff. Cah. Biol. mar., T. 4, pp. 2332.Google Scholar
Anderson, J. G. & Meadows, P. S. 1969. Bacteria on intertidal sand grains. Hydrobiologia, Vol. 33, PP. 3346.CrossRefGoogle Scholar
Boaden, P. J. S. 1962. Colonization of graded sand by an interstitial fauna. Cah. Biol. mar. T. 3, pp. 245–8.Google Scholar
Boisseau, J.-P. 1957. Technique pour l'étude quantitative de la faune interstitielles des sables. C. r. Congr. Soc. sav., Bordeaux, pp. 117–19.Google Scholar
Brafield, A. E. 1964. The oxygen content of interstitial water in sandy shores. J. Anim. Ecol., Vol. 33, pp. 97116.CrossRefGoogle Scholar
Capstick, C. K. 1959. The distribution of free-living nematodes in relation to salinity in the middle and upper reaches of The River Blyth estuary. J. Anim. Ecol., Vol. 28, pp. 189210.CrossRefGoogle Scholar
De Zio, S. & Grimaldi, P. 1966. Ecological aspects of Tardigrada distribution in South Adriatic beaches. Veröff. Inst. Meeresforsch. Bremerh., Bd. 2, pp. 8794.Google Scholar
Dörjes, J. 1968. Zur Ökologie der Acoela (Turbellaria) in der Deutschen Bucht. Helgoländer wiss. Meeresunters., Bd. 18, pp. 78115.CrossRefGoogle Scholar
Emery, K. O. 1961. A simple method for measuring beach profiles. Limnol. Oceanogr., Vol. 6, pp. 90–3.CrossRefGoogle Scholar
Enckell, P. H. 1968. Oxygen availability and microdistribution of interstitial mesofauna in Swedish fresh-water sandy beaches. Oikos, Vol. 19, pp. 271–91.CrossRefGoogle Scholar
Fenchel, T.Jansson, B.-O. & Thun, W. Von 1967. Vertical and horizontal distribution of the metazoan microfauna and of some physical factors in a sandy beach in the northern part of the øresund. Ophelia, Vol. 4, pp. 227–43.CrossRefGoogle Scholar
Gordon, M. S. 1960. Anaerobiosis in marine sandy beaches. Science, N.Y., Vol. 132, pp. 616–17.CrossRefGoogle ScholarPubMed
Gray, J. S. 1966a. Selection of sands by Protodrilus symbioticus Giard. Veröff. Inst. Meeresforsch. Bremerh., Bd. 2, pp. 105–16.Google Scholar
Gray, J. S. 1966b. The attractive factor of intertidal sands to Protodrilus symbioticus Giard. J. mar. biol. Ass. U.K., Vol. 46, pp. 627–45.CrossRefGoogle Scholar
Gray, J. S. 1966c. Factors controlling the localizations of populations of Protodrilus symbioticus Giard. J. Anim. Ecol., Vol. 35, pp. 435–42.CrossRefGoogle Scholar
Gray, J. S. 1967. Substrate selection by the archiannelid Protodrilus rubropharyngeus. Helgoländer wiss. Meeresunters., Bd. 15, pp. 253–69.CrossRefGoogle Scholar
Gray, J. S. 1968. An experimental approach to the ecology of the harpacticid Leptastacus constrictus Lang. J. exp. mar. Biol. Ecol., Vol. 2, pp. 278–92.CrossRefGoogle Scholar
Gray, J. S. & Johnson, R. M. 1970. The bacteria of a sandy beach as an ecological factor affecting the interstitial gastrotrich Turbanella hyalina Schultze. J. exp. mar. Biol. Ecol., Vol. 4, pp. 119–33.CrossRefGoogle Scholar
Gray, J. S. & Rieger, R. 1971. A quantitative study of the meiofauna of an exposed sandy beach, at Robin Hoods Bay, Yorkshire. J. mar. biol. Ass. U.K., Vol. 51, pp. 119.CrossRefGoogle Scholar
Jansson, B.-O. 1967a. The significance of grain size and pore water content for the interstitial fauna of sandy beaches. Oikos, Vol. 18, pp. 311–22.CrossRefGoogle Scholar
Jansson, B.-O. 1967b. Diurnal and annual variations of temperature and salinity of interstitial water in sandy beaches. Ophelia, Vol. 4, pp. 173201.CrossRefGoogle Scholar
Jansson, B.-O. 1967c. The availability of oxygen for the interstitial fauna of sandy beaches. J. exp. mar. Biol. Ecol., Vol. 1, pp. 123–43.CrossRefGoogle Scholar
Jansson, B.-O. 1968. Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia, Vol. 5, pp. 171.CrossRefGoogle Scholar
Johnson, R. G. 1967. Salinity of interstitial water in a sandy beach. Limnol. Oceanogr., Vol. 12, pp. 17.CrossRefGoogle Scholar
Mason, W. T. & Yevitch, P. P. 1967. The use of Phloxine B and Rose Bengal stains to facilitate sorting benthic samples. Trans. Am. microsc. Soc, Vol. 86, pp. 221–3.CrossRefGoogle Scholar
Morgans, J. F. C. 1956. Notes on the analysis of shallow-water soft substrata. J. Anim. Ecol., Vol. 26, pp. 367–87.CrossRefGoogle Scholar
Mcintyre, A. D. 1969. Ecology of marine meiobenthos. Biol. Rev., Vol. 44, pp. 245–90.CrossRefGoogle Scholar
Pollock, L. W. 1970. Distribution and dynamics of interstitial Tardigrada at Woods Hole, Massachusetts, U.S.A. Ophelia, Vol. 7, pp. 145–65.CrossRefGoogle Scholar
Quenouille, M. H. 1950. Introductory Statistics, 248 pp. Oxford: Pergamon Press.Google Scholar
Renaud-Debyser, J. 1956. Répartition de deux tardigrades, Batillipes mirus Richters et Stygarctus bradypus Schulz, dans un segment de plage du Bassin d'Arcachon. C. r. hebd. Séanc. Acad. Sci. Paris., T. 243, pp. 1365–9.Google Scholar
Renaud-Debyser, J. 1959. Sur quelques tardigrades du bassin d'Arcachon. Vie Milieu, T. 10, pp. 135–46.Google Scholar
Renaud-Debyser, J. 1963. Recherches écologiques sur la faune interstitielle des sables. (Bassin d'Arcachon ile de Bimini, Bahamas.) Vie Milieu, T. 15 (Suppl.), pp. 1157.Google Scholar
Renaud-Debyser, J. & Salvat, B. 1963. Eléments de prosperité des biotopes des sédiments meubles intertidaux et éecologie de leurs population en microfaune et macrofaune. Vie Milieu, T. 14, pp. 463550.Google Scholar
Schmidt, P. 1968. Die quantitative Verteilung und Populationsdynamik des Mesopsammons am Gezeiten-Sandstrand der Nordsee-Insel Sylt. I. Faktorengefüge und biologische Gliederung des Lebensraumes. Int. Revue ges. Hydrobiol. Hydrogr., Bd. 53, pp. 723–79.CrossRefGoogle Scholar
Schmidt, P. 1969. Die quantitative Verteilung und Populationsdynamik des Mesopsammons am Gezeiten-Sandstrand der Nordsee-Insel Sylt. II. Quantitative Verteilung und Populationsdynamik einzelner Arten. Int. Revue ges. Hydrobiol. Hydrogr., Bd. 54, pp. 95174.CrossRefGoogle Scholar
Schmidt, P. & Teuchert, G. 1969. Quantitative Untersuchungen zur Ökologie der Gastrotrichen im Gezeiten-Sandstrand der Insel Sylt. Mar. Biol., Bd. 4, pp. 423.CrossRefGoogle Scholar
Smidt, E. L. B. 1951. Animal production in the Danish Waddensea. Meddr Danm. Fisk. -og Havunders., Bd. 11, pp. 1151.Google Scholar
Steele, J. H.Munro, A. L. S. & Giese, G. S. 1970. Environmental factors controlling the epipsammic flora on beach and sublittoral sands. j. mar. biol. Ass. U.K., Vol. 50, pp. 907–18.CrossRefGoogle Scholar
Walton, W. R. 1952. Techniques for the recognition of living foraminifera. Contr. Cushman. Lab. foramin. Res., Vol. 3, pp. 5660.Google Scholar
Westheide, W. 1968. Zur quantitativen Verteilung von Bakterien und Hefen in einem Gezeiten-strand der Nordseeküste. Mar. Biol., Bd. 1, pp. 336–47.CrossRefGoogle Scholar
Wieser, W. 1959. The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget Sound. Limnol.Oceanogr., 4,pp.181–94CrossRefGoogle Scholar