Hostname: page-component-cb9f654ff-p5m67 Total loading time: 0 Render date: 2025-07-31T23:32:29.452Z Has data issue: false hasContentIssue false

Decline of the plastochrone interval in a Zostera marina meadow: 18 years of data

Published online by Cambridge University Press:  30 May 2025

Elena Solana-Arellano*
Affiliation:
Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
Olga Flores-Uzeta
Affiliation:
Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
Carlos Eduardo Cabrera-Ramos
Affiliation:
Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
J. Adán Avilés-Chávez
Affiliation:
Department of Marine Ecology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
*
Corresponding author: Elena Solana-Arellano; Email: esolana@cicese.mx

Abstract

Climate change profoundly affects plant phenology. An important parameter in research on plant dynamics is the plastochrone interval (PI), which is define as the time interval between the formation of successive leaves. The PI has been used to evaluate seagrass demography and as a direct measure of shoot growth and age. Variations in PI determine the growth rates, maintenance, and success of seagrass beds. Global warming could affect the PI dynamics of Zostera marina and, consequently, alter the dynamics of seagrass beds. Using Bayesian linear regression with a time series composed of 316 biweekly sampling dates from 1998 to 2018, we evaluated PI dynamics in the Punta Banda Estuary in Baja California, Mexico. We found that the tendency of the series was linear with parameter values of β0 = 1.65 (SD ±0.19) and β1 = −0.012 (SD ±0. 001). The Bayesian analysis of variance showed strong evidence of differences in the PI among years, given probabilities from 3.2 to 1.88 × 106 times higher of differences than no differences. The largest differences were detected between cold and hot years. The climatology of the time series PI values showed changes in seasonality over time. Summer and autumn were found to be the most perturbed seasons. Finally, by linking the PI estimates with the sea surface temperature anomalies for the complete series, a good inverse correspondence was observed between hot years and high PI, as well as cold years and low PI values, suggesting that climate change has affected PI among years and seasons.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acosta-Ruiz, M and Alvarez-Borrego, S (1974) Distribución Superficial de Algunos Parametros Hidrológicos Físicos y Químicos, en el Estero de Punta Banda, B. C., en Otoño e Invierno. Ciencias Marinas 1, 1645.10.7773/cm.v1i1.249CrossRefGoogle Scholar
Azcárate-García, T, Beca-Carretero, P, Cara, CL, Villamayor, B, Cosnett, E, Bermejo, R, Hernández, , Brun, FG and Stengel, DB (2022) Seasonal plant development and meadow structure of Irish and southern Spanish seagrass populations. Aquatic Botany 183, 103569.10.1016/j.aquabot.2022.103569CrossRefGoogle Scholar
Bartelli, CM and Unsworth, RKF (2014) Protecting the hand that feed us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine Pollution Bulletin 83, 425429.10.1016/j.marpolbul.2013.08.011CrossRefGoogle Scholar
Brockwell, PJ and Davis, RA (2002) Introduction to Time Series and Forecasting, 2nd Edn. London: Brockwell.10.1007/b97391CrossRefGoogle Scholar
Brodie, G and N'Yeurt, AR (2018) Effects of climate change on seagrasses and seagrass habitats relevant to the Pacific Islands.Commonwealth Marine Economies Programme. Pacific marine climate report card: Science Review, 112131 pp.Google Scholar
Brun, FG, Vergara, JJ, Peralta, G, García-Sánchez, MP, Hernández, I and Pérez-Lloréns, LL (2006) Clonal building, simple growth rules and phylloclimate as key steps to develop functional–structural seagrass models. Marine Ecology Progress Series 323, 133148.10.3354/meps323133CrossRefGoogle Scholar
Cowpertwait, PS and Metcalfe, AV (2009) Introductory Time Series with R. NY, USA: Springer Science & Business Media.Google Scholar
Dahl, M, Asplund, ME, Björk, M, Deyanova, D, Infantes, E, Isaeus, M, Nyström Sandman, A and Gullström, M (2020). The influence of hydrodynamic exposure on carbon storage and nutrient retention in eelgrass (Zostera marina L.) meadows on the Swedish Skagerrak coast. Scientific Reports 10, 13666.10.1038/s41598-020-70403-5CrossRefGoogle Scholar
Dahl, M, Deyanova, D, Gütschow, S, Asplund, ME, Lyimo, LD, Karamfilov, V, Santos, R, Björk, M and Gullström, M (2016) Sediment characteristics as an important factor for revealing carbon storage in Zostera marina meadows: a comparison of four European areas, Biogeosciences Discuss. Available at https://bg.copernicus.org/preprints/bg-2016-137/ (accessed 10 May 2016).10.5194/bg-2016-137CrossRefGoogle Scholar
Dennison, WC (1990) Leaf production. In Phillips, RC and McRoy, CP (eds), Seagrass Research Methods. Paris, France: UNESCO, pp. 7779.Google Scholar
Duarte, CM (1991) Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series 77, 289300.10.3354/meps077289CrossRefGoogle Scholar
Duarte, CM and Chiscano, CL (1999) Seagrass biomass and production: a reassessment. Aquatic Botany 65, 159174.10.1016/S0304-3770(99)00038-8CrossRefGoogle Scholar
Duarte, CM, Hemminga, MA and Marbá, N (1996) Growth and population dynamics of Thalassodendron ciliatum in a Kenyan back-reef lagoon. Aquatic Botany 55, 111.CrossRefGoogle Scholar
Duarte, CM, Kennedy, H, Marbà, N and Hendriks, I (2013) Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean and Coast Management 83, 3238.10.1016/j.ocecoaman.2011.09.001CrossRefGoogle Scholar
Duarte, CM, Marbá, N, Agawin, N, Cebrián, J, Enriquez, S, Fortes, MD, Gallegos, ME, Merino, M, Olesen, B, Sand-Jensen, K, Uri, J and Vermaat, J (1994) Reconstruction of seagrass dynamics: age determination and associated tools for the seagrass ecologist. Marine Ecology Progress Series 107, 195207.CrossRefGoogle Scholar
Duarte, B, Martins, I, Rosa, R, Matos, AR, Roleda, MY, Reush, TBH, Engleen, AH, Serrao, E, Pearson, G, Marques, JC, Cacador, I, Duarte, CM and Jueterbock, A (2018) Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Frontiers in Marine Science 5, 190.10.3389/fmars.2018.00190CrossRefGoogle Scholar
Duarte, CM and Sand-Jensen, K (1990) Seagrass colonization: biomass development and shoot demography in Cymodocea nodosa patches. Marine Ecology Progress Series 67, 97103.10.3354/meps067097CrossRefGoogle Scholar
Echavarria-Heras, H, Solana-Arellano, E, Leal-Ramírez, C and Castillo, O (2013) Using allometric procedures to substantiate the plastochrone method for eelgrass leaf growth assessments. Theoretical Biology and Medical Modelling 10, 34 (accessed 14 April 2013).10.1186/1742-4682-10-34CrossRefGoogle ScholarPubMed
Erftemeijer, PLA and Herman, PMJ (1994) Seasonal changes in environmental variables, biomass, production and nutrients in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia. Oecologia 99, 4549.10.1007/BF00317082CrossRefGoogle ScholarPubMed
Erickson, RO and Michelini, FJ (1957) The plastochron index. American Journal of Botany 44, 297305.10.1002/j.1537-2197.1957.tb10544.xCrossRefGoogle Scholar
Fang, C, Hang, P, Wang, X, Jiansheng, Z and Li, W (2018) Seasonal variation in leaf structure of the eelgrass Zostera marina on the eastern coast of the Shandong Peninsula, China. Aquatic Ecosystem Health and Management 21, 7081.10.1080/14634988.2018.1429789CrossRefGoogle Scholar
Fourqurean, JW, Moore, TO, Fry, B and Hollibaugh, JT (1997) Spatial and temporal variation in C:N:P ratios, δ15N, and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Marine Ecology Progress Series 157, 147157.10.3354/meps157147CrossRefGoogle Scholar
Gaeckle, JL and Short, FT (2002) A plastochrone method to measuring leaf growth in eelgrass, Zostera marina L. Bulleting of Marine Sciences 71, 12371246.Google Scholar
Grolemund, G and Wickham, H (2011) Dates and times made easy with lubridate. Journal of Statistical Software 40, 125. Available at https://www.jstatsoft.org/v40/i03/ 10.18637/jss.v040.i03CrossRefGoogle Scholar
Hemminga, MA and Duarte, CM (2000) Seagrass Ecology. UK: Cambridge University Press.10.1017/CBO9780511525551CrossRefGoogle Scholar
Höffle, H, Thomsen, MS and Holmer, M (2011) High mortality of Zostera marina under high temperature regimes but minor effects of invasive macroalgae Gracilaria vermiculophylla. Estuarine Coastal and Shelf Science 92, 3546.10.1016/j.ecss.2010.12.017CrossRefGoogle Scholar
Hosokawa, S, Nakamura, Y and Kuwae, T (2009) Increasing temperature induces shorter leaf life span in an aquatic plant. Oiko 118, 11581163.10.1111/j.1600-0706.2009.17288.xCrossRefGoogle Scholar
Ibarra-Obando, SE, Boudouresque, CF and Roux, M (1997) Leaf dynamics and production of a Zostera marina bed near its southern distributional limit. Aquatic Botany 58, 99112.10.1016/S0304-3770(97)00020-XCrossRefGoogle Scholar
Ibarra-Obando, SE and Huerta-Tamayo, R (1987) Blade production of Zostera marina L during the summer autumn period on the Pacific Coast of México. Aquatic Botany 28, 301315.10.1016/0304-3770(87)90007-6CrossRefGoogle Scholar
Ibarra-Obando, SE and Poumian-Tapia, M (1991) The effect of tidal exclusion on salt marsh vegetation in Baja California Mexico. Wetland Ecology and Management 1, 131148.10.1007/BF00177288CrossRefGoogle Scholar
Jacobs, RPWM (1979) Distribution and aspects of the production and biomass of eelgrass, Zostera marina L at Roscoff, France. Aquatic Botany 7, 151172.10.1016/0304-3770(79)90019-6CrossRefGoogle Scholar
Jeffreys, H (1935) Some test of significance, treated by the theory of probability. Proceedings of the Cambridge Philosophy Society 31, 203222.10.1017/S030500410001330XCrossRefGoogle Scholar
Jiménez-Ramos, R, Henares, C, Egea, LG, Vergara, JJ and Brun, FG (2023) Leaf senescence of the seagrass Cymodocea nodosa in Cádiz Bay, Southern Spain. Diversity 15, 187.10.3390/d15020187CrossRefGoogle Scholar
Johnson, AJ, Shields, EC, Kendrick, GA and Orth, RJ (2021) Recovery dynamics of the seagrass Zostera marina following mass mortalities from two extreme climatic events. Estuaries and Coast 44, 535544.10.1007/s12237-020-00816-yCrossRefGoogle Scholar
Johnson, M, Williams, S, Lieberman, C and Solbak, A (2003) Changes in the abundance of the seagrasses Z. marina and R. maritima in San Diego, California, following an El Nino event. Estuaries 26, 106115.10.1007/BF02691698CrossRefGoogle Scholar
Jordà, G, Marbà, N and Duarte, CM (2012) Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change 2, 821824.10.1038/nclimate1533CrossRefGoogle Scholar
Kaldy, JE (2014) Effect of temperature and nutrient manipulations on eelgrass Zostera marina L. from the Pacific Northwest, USA. Journal of Experimental Marine Biology and Ecology 453, 108115.10.1016/j.jembe.2013.12.020CrossRefGoogle Scholar
Kass, RE and Raftery, AE (1995) Bayes factors. Journal of the American Statistical Association 90, 773795.10.1080/01621459.1995.10476572CrossRefGoogle Scholar
Kentula, ME and McIntire, CD (1986) The autecology and production eelgrass (Zostera marina L.) in Netarts Bay, Oregon. Estuaries 9, 188199.10.2307/1352130CrossRefGoogle Scholar
Kim, YK, Kim, SH and Lee, KS (2015) Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuaries and Coasts 38, 558568.10.1007/s12237-014-9833-2CrossRefGoogle Scholar
Kraemer, GP and Alberte, RS (1993) Age related pattern metabolism and biomass in subterranean tissues of Zostera marina (eelgrass). Marine Ecology Progress Series 95, 193203.10.3354/meps095193CrossRefGoogle Scholar
Lavery, PS, Mateo, MA, Serrano, O and Rozaimi, M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon system service. PLoS ONE 8, e73748 (accessed 5 September 2013).10.1371/journal.pone.0073748CrossRefGoogle Scholar
Lee, KS, Park, SR and Kim, JB (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350, 144175.10.1016/j.jembe.2007.06.016CrossRefGoogle Scholar
Levin, LA, Boesch, DF, Covich, A, Dahm, C, Erséus, C, Ewel, KC, Kneib, RT, Moldenke, A, Palmer, MA, Snelgrove, P, Strayer, D and Weslawski, JM (2001) The function of marine critical transition tones and the importance of sediment biodiversity. Ecosystems 4, 430451.10.1007/s10021-001-0021-4CrossRefGoogle Scholar
Marbá, N, Cebrian, J, Enriquez, S and Duarte, CM (1996) Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Marine Ecology Progress series 133, 203215.10.3354/meps133203CrossRefGoogle Scholar
Marbá, N and Duarte, CM (1998) Rhizome elongation and seagrass clonal growth. Marine Ecology Progress series 174, 269280.10.3354/meps174269CrossRefGoogle Scholar
Marbá, N and Duarte, CM (2010) Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16, 23662375.10.1111/j.1365-2486.2009.02130.xCrossRefGoogle Scholar
Martínez-Inostros, M (1994) Caracterización de oxígeno disuelto, salinidad temperatura y nutrientes antes y después de una temporada de lluvias (Septiembre de 1992 y Marzo de 1993) en el Estero de Punta Banda (Professional Thesis). Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, México.Google Scholar
McDonald, AM, Prado, P, Heck, KL Jr, Forqurean, JW, Frankovich, TA, Dunton, KH and Cebrian, J (2016) Seagrass growth, reproductive and morphological plasticity across environmental gradients over a large spatial scale. Aquatic Botany 134, 8796.10.1016/j.aquabot.2016.07.007CrossRefGoogle Scholar
Meling-Lopez, AE and Ibarra-Obando, SE (1997) The use of previous growth as a morphological index to assess blade production in Zostera marina. Aquatic Botany 59, 117125.10.1016/S0304-3770(97)00025-9CrossRefGoogle Scholar
Orth, RJ, Carruthers, TJB, Dennison, WC, Duarte, CM, Fourqurean, JW, Heck, KL Jr, Hughes, AR, Kendrick, GA, Kenworthy, WJ, Olyarnik, S, Short, FT, Waycott, M and Williams, SL (2006) A global crisis for seagrass ecosystems. BioScience 56, 987996.CrossRefGoogle Scholar
Overland, J, Rodionov, S, Minobe, S and Bond, N (2008) North Pacific regime shifts: definitions, issues and recent transitions. Progress in Oceanography 77, 92102.10.1016/j.pocean.2008.03.016CrossRefGoogle Scholar
Pritchard, DW, de la Paz-Vela, R, Cabrera-Muro, HR, Farreraz, S and Morales, E (1978) Hidrología fisca de estero de punta banda, parte I: análisis de datos. Ciencias Marinas 5, 123.10.7773/cm.v5i2.325CrossRefGoogle Scholar
R Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. Available at https://www.r-project.org/ (accessed 12 October 2024).Google Scholar
Ruesink, JL, Fitzpatrick, JP, Dumbauld, BR, Hacker, SD, Trimble, AC, Wagner, EL and Wisehart, LM (2012) Life history and morphological shifts in an intertidal seagrass following multiple disturbances. Journal of Experimental Marine Biology and Ecology 424–425, 2531.10.1016/j.jembe.2012.05.002CrossRefGoogle Scholar
Salazar-Barrios, A (2015) Simulación de la tasa de crecimiento foliar de una pradera de Zostera marina L. en el estero de Punta Banda, Ensenada Baja California, México (Master's Thesis). Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México.Google Scholar
Seddon, S, Connolly, RM and Edyvane, KS (2000) Large scale seagrass dieback in Northern Spencer Gulf, South Australia. Aquatic Botany 66, 297310.10.1016/S0304-3770(99)00080-7CrossRefGoogle Scholar
Short, FT and Duarte, CM (2001) Methods for the measurements of seagrass abundance and depth distribution. In Shorts, FT, Coles, R and Short, CA (eds), Global Seagrass Research Methods. Amsterdam: Elsevier Science BV, pp. 155182.CrossRefGoogle Scholar
Short, FT and Neckles, HA (1999) The effect of global climate change on seagrasses. Aquatic Botany 63, 169196.CrossRefGoogle Scholar
Shulkin, V, Zharikov, V, Lebedev, A and Bazarov, K (2024) Assessment of carbon stock in the Zostera marina Linnaeus, 1753 ecosystem on sandy sediments of the Srednyaya Bight (Peter the Great Bay, the Sea of Japan) based on field observations. Marine Biological Journal 9, 98114.Google Scholar
Shumway, RH and Stoffer, DS (2010) Time Series Analysis and its Applications with R Examples, 4th Edn. NY, USA: Springer.Google Scholar
Solana-Arellano, E, Echavarria-Heras, H and Franco-Vizcaíno, E (2010) A dynamical model for characterizing seasonality effects on plastochrone intervals. Annals of Applied Biology 157, 99110.10.1111/j.1744-7348.2010.00414.xCrossRefGoogle Scholar
Solana-Arellano, E, Echavarria-Heras, H and Leal-Ramirez, C (2009) Characterization of environmental forcing on Zostera marina L plastochrone interval dynamics in the Punta Banda Estuary, BC Mexico: an empirical modelling approach. Scientia Marina 73, 95103.10.3989/scimar.2009.73n1095CrossRefGoogle Scholar
Thom, R, Southard, S and Borde, A (2014) Climate-linked mechanisms driving spatial and temporal variation in eelgrass (Zostera marina L) growth and assemblage structure in Pacific Northwest estuaries, USA. Journal of Coastal Research 68, 111.10.2112/SI68-001.1CrossRefGoogle Scholar
Tomlinson, PB (1974) Vegetative morphology and meristem dependence – the foundation of productivity in seagrasses. Aquaculture 4, 107130.10.1016/0044-8486(74)90027-1CrossRefGoogle Scholar
Tupan, CI, Pentury, R and Uneputty, PA (2016) Population dynamics of seagrass Thalassia hemprichii in Tanjug Tiram Waters, Poka, Ambon Island, Indonesia. Aquaculture, Aquarium Conservation & Legislation Bioflux 9, 12861293.Google Scholar
Turner, SJ (2007) Growth and productivity of intertidal Zostera capricorni in New Zealand estuaries New Zealand. Journal of Marine and Freshwater Research 41, 7790.10.1080/00288330709509897CrossRefGoogle Scholar
Van Tussenbroek, BI (2002) Static life-table analysis and demography of the foliar shoots of the tropical seagrass Thalassia testudinum. Bulleting of Marine Sciences 71, 12471256.Google Scholar
Vieira, VMNC, López, IE and Creed, J (2018) The biomass–density relationship and its use as an ecological indicator BMC. Ecology 18, 44.Google Scholar
Wium-Andersen, S and Borum, J (1984) Biomass variation and autotrophic production of an epiphyte–macrophyte community in a coastal Danish area: I Eelgrass (Zostera marina L.) biomass and net production. Ophelia 23, 3346.10.1080/00785236.1984.10426603CrossRefGoogle Scholar
Wong, MC, Bravo, MA and Dowd, M (2013) Ecological dynamics of Zostera marina (eelgrass) in three adjacent bays in Atlantic Canada. Botanica Marina 56, 413424.10.1515/bot-2013-0068CrossRefGoogle Scholar
Supplementary material: File

Solana-Arellano et al. supplementary material

Solana-Arellano et al. supplementary material
Download Solana-Arellano et al. supplementary material(File)
File 30.9 KB