Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T21:51:32.064Z Has data issue: false hasContentIssue false

An annual cycle of vitellogenesis in the elasmobranch Scyliorhinus canicula

Published online by Cambridge University Press:  11 May 2009

J. C. A. Craik
Affiliation:
Department of Zoology, University College of North Wales, Bangor, Gwynedd

Extract

Plasma vitellogenin synthesis in adult female Scyliorhinus canicula L. continued throughout the year but the rate of synthesis was significantly lower between March and August than during the rest of the year. The hepatosomatic index (liver weight as percentage of body weight) underwent annual variation in both sexes but this variation was considerably more pronounced in the female. Increase in hepatosomatic index in the female was accompanied by increase in the percentage of lipid in the liver and was largely caused by increase in the total lipid content of the liver. Comparison of livers of males and females showed that the percentage of lipid was not significantly different while the percentage of solids insoluble in water and organic solvents was greater in the female. Oviposition, as indicated by the percentage of females with eggs in the oviducts, continued throughout the year, reaching a minimum in September-October. Between July and October, parameters associated with vitellogenesis began recovery from their respective annual minima in the following order: plasma oestradiol level, hepatosomatic index, rate of synthesis of plasma vitellogenin, gonosomatic index, plasma vitellogenin level, rate of oviposition.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911917.CrossRefGoogle ScholarPubMed
Craik, J. C. A. 1978a. Plasma levels of vitellogenin in the elasmobranch Scyliorhinus canicula L. (lesser spotted dogfish). Comparative Biochemistry and Physiology, 60B, 918.Google Scholar
Craik, J. C. A. 1978b. Kinetic studies of vitellogenin metabolism in the elasmobranch Scyliorhinus canicula. Comparative Biochemistry and Physiology. (In the Press.)CrossRefGoogle Scholar
Craik, J. C. A. 1978c. The effects of oestrogen treatment on certain plasma constituents associated with vitellogenesis in the elasmobranch Scyliorhinus canicula L. General and Comparative Endocrinology. (In the Press.)CrossRefGoogle Scholar
Dodd, J. M. 1972. Ovarian control in cyclostomes and elasmobranchs. American Zoologist, 12, 325339.CrossRefGoogle Scholar
Follett, B. K. Nicholls, T. J. & Redshaw, M. R. 1968. The vitellogenic response in the South African clawed toad (Xenopus laevis Daudin). Journal of Cellular Physiology, 72, Supplement 1, 91102.CrossRefGoogle ScholarPubMed
Ford, E. 1920. A contribution to our knowledge of the life-histories of the dogfishes landed at Plymouth. Journal of the Marine Biological Association of the United Kingdom, 12, 468505.CrossRefGoogle Scholar
Harris, J. E. 1952. A note on the breeding season, sex ratio and embryonic development of the dogfish Scyliorhinus canicula (L.). Journal of the Marine Biological Association of the United Kingdom, 31, 269274.CrossRefGoogle Scholar
Kollmann, M. Van Gaver, F. & Timon-David, J. 1929. Le développement du foie et son rendement en huile chez ScyIlium canicula L. Compte rendu des séances de la Société de biologie, 100, 355358.Google Scholar
LeDanois, E. 1913. Contribution à 1'étude systématique et biologique des poissons de la Manche occidefitale. Annales de l'lnstitut océanographique, 5 (5), 214 pp.Google Scholar
Leloup, J. & Olivereau, M. 1951. Données biométriques comparatives sur la Roussette (Scyllium canicula L.) de la Manche et de la Méditerranée. Vie et milieu, 2, 182209.Google Scholar
Mellinger, J. 1966. Étude biométrique et histophysiologique des relations entre les gonades, le foie et la thyroide chez S. caniculus. Contribution à l'études des caractères sexuels secondaires des Chondrichthyens. Cahiers de biologie marine, 7, 107137.Google Scholar
Metten, H. 1941. Studies on the reproduction of the dogfish. Philosophical Transactions of the Royal Society (B), 230, 217238.Google Scholar
Olivereau, M. & Leloup, J. 1950. Variations du rapport hépato-somatique chez la Roussette (Scyllium canicula L.) au cours du développement et de la reproduction. Vie et milieu, 1, 377420.Google Scholar
Plack, P. A. Pritchard, D. J. & Fraser, N. W. 1971. Egg proteins in cod serum. Biochemical Journal, 121, 847856.CrossRefGoogle ScholarPubMed
Redshaw, M. R. & Follett, B. K. 1976. Physiology of egg yolk production by the fowl: the measurement of circulating levels of vitellogenin employing a specific radioimmunoassay. Comparative Biochemistry and Physiology, 55A, 399405.CrossRefGoogle ScholarPubMed
Wallace, R. A. & Jared, D. W. 1968. Studies on amphibian yolk. VII. Serum phosphoprotein synthesis by vitellogenic females and estrogen-treated males of Xenopus laevis. Canadian Journal of Biochemistry, 46, 953959.CrossRefGoogle ScholarPubMed
Warren, D. C. & Conrad, R. M. 1939. Growth of the hen's ovum. Journal of Agricultural Research, 58, 875893.Google Scholar
Woodhead, P. M. J. 1968. Seasonal changes in the calcium content of the blood of arctic cod. Journal of the Marine Biological Association of the United Kingdom, 48, 8191.CrossRefGoogle Scholar