Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T18:51:17.576Z Has data issue: false hasContentIssue false

Allozyme Similarity in Two Morphologically Distinguishable Populations of Paracentrotus Lividus (Echinodermata) From Distinct Areas of the Mediterranean Coast

Published online by Cambridge University Press:  11 May 2009

M. Arculeo
Affiliation:
Istituto di Zoologia, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
S. Lo Brutto
Affiliation:
Istituto di Zoologia, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
M.P. Pancucci
Affiliation:
National Centre For Marine Research, 16604 Hellenikon, Athens, Greece
M. Cammarata
Affiliation:
Istituto di Zoologia, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
N. Parrinello
Affiliation:
Istituto di Zoologia, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.

Extract

Allozymes of Paracentrotus lividus from Palermo Gulf in the northern Sicilian coast (Italy) and from a small body-size population in the western Greek coast (Ionian Sea) were investigated by PAGE. Five of the twenty examined loci were polymorphic (AAT*, ADH*, ME*, PGI* and PGM*) over each population with a polymorphism value of 0–25. Average heterozygosity was equal to 0081 in the Sicilian sample and 0084 in the Greek. Deviations from Hardy-Weinberg equilibrium were significant in ME* and PGI* loci (as calculated by y). Nei's (1978) genetic distance (D=0–0025) index described a close identity between the two samples. F ST value of polymorphic loci ranged from 0001 to 0029, its mean value (0–008) resulting low and appearing to be discriminate between the samples with a significant difference (P<0–05). The number of migrants per generation was equal to 31.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Hassan, L.A.J., Webb, C.J., Giama, M. & Miller, P.J., 1987. Phosphoglucose isomerase polymorphism in the common goby, Pomatoschistus microps (Krayer) (Teleostei: Gobiidae), around the British Isles. Journal of Fish Biology, 30, 281298.CrossRefGoogle Scholar
Altukhov, Y.P., 1981. The stock concept from the viewpoint of population genetics. Canadian Journal of Fisheries and Aquatic Sciences, 38, 15231538.CrossRefGoogle Scholar
Ayala, F.J., 1975. Genetic differentiation during the speciation process. Evolutionary Biology, 8, 178.Google Scholar
Ayala, F.J. & Valentine, J.W., 1974. Genetic variability in the cosmopolitan deep-water phiuran Ophiumiisium lymdni. Marine Biology, T7, 5157.CrossRefGoogle Scholar
Ayala, F.J. & Kiger, J.A., 1984. Modern genetics, 2nd ed. California: Benjamin Cummings.Google Scholar
Cammarata, M., Parrinello, N. & Arculeo, M., 1991. Biochemical taxonomic differentiation between Mullus barbatus and Mullus surmuletus (Pisces, Mullidae). Comparative Biochemistry Physiology, 99B, 719722.Google Scholar
Davis, B.J., 1964. Method and application to human serum protein. Annals of the New York Academy of Science, 111, 404428.CrossRefGoogle Scholar
Delmas, P. & Regis, M.B., 1984. Influence d'une pollution complexe a dominante domestique sur les populations de l'échinoide comestible Paracentrotus lividus (Lamark). Vie Marine, 6, 6372.Google Scholar
Frantzis, A. & Grémare, A., 1992. Ingestion, absorption, and growth rates of Paracentrotus lividus (Echinodermata: Echinoidea) fed different macrophytes. Marine Ecology Progress Series, 95, 169183.CrossRefGoogle Scholar
Hunt, A. & Ayre, D.J., 1989. Population structure in the sexually reproducing sea anemone Oulactis muscosa. Marine Biology, 102, 537544.CrossRefGoogle Scholar
Le Vourch, J., Millot, C., Castagne, N., Le Borgne, P. & Olry, J.P., 1992. Atlas des fronts thermiques en mer Mediterranée d'après l'imagerie satelliteire. Mémoire de Vlnstitute Oceanographic de Monaco, 16, 1016.Google Scholar
Ihssen, P.E., Booke, M.E., Casselman, J.M., Payne, N.R. & Utter, F.M., 1981. Stock identification: materials and methods. Canadian Journal of Fisheries and Aquatic Sciences, 38, 18381855.CrossRefGoogle Scholar
MacEwen, E.A. & Hobson, A.D., 1954. Occurrence of Paracentrotus lividus (Lamarck) in Scotland. Nature, London, 174, 752.CrossRefGoogle Scholar
Marcus, N.H., 1977. Genetic variation within and between geographically separated populations of the sea urchin, Arbacia punctata. Biological Bulletin, Marine Biological Laboratory, Woods Hole, 153, 560576.CrossRefGoogle Scholar
Matsuoka, N., 1981. Philogenetic relationship among five species of starfish of the genus Asterina: an electrophoretic study. Comparative Biochemistry and Physiology, 70B, 739743.Google Scholar
Matsuoka, N. & Nakamura, Y., 1991. Genetic distance and protein polymorphism in two sea urchin spcies of the order arbacoida and implications for their evolution. Comparative Biochemistry and Physiology, 98B, 2127.Google Scholar
Matsuoka, N., Inamori, M. & Sugawara, M., 1993. High genetic variability in the starfish Distolasterias nippon revealed by enzyme electrophoresis. Comparative Biochemistry and Physiology, 104B, 7579.Google Scholar
May, B. & Krueger, C.C., 1990. Use of allozyme data for population analysis. In Electrophoretic and isoelectric focusing techniques in fisheries management (ed. D.H., Whitmare), pp. 157171. Boston: CRC Press.Google Scholar
Murphy, L.S., Rowe, G.T. & Haedrich, R.L., 1976. Genetic variability in deep-sea echinoderms. Deep-Sea Research, 23, 339348.Google Scholar
Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583590.CrossRefGoogle ScholarPubMed
Pancucci, M.A., Panayotidis, P. & Zenetos, A., 1993. Morphological changes in sea urchin populations as a response to environmental stress. In Quantified phenotypic response in morphology and physiology (ed. J.C., Aldrich), pp. 247257. Dublin: JAPAGA.Google Scholar
Peres, J.M. & Picard, J., 1956. Note preliminaire sur la campagne de recherches benthiques effectuee par la ‘Calypso’ sur le seuil siculo-tunisien. Rapports et Procès-verbaux des Réunions. Commission. Internationale pour L'Exploration Scientifiaue de la Mer Mediterranée, Paris, 13, 219224.Google Scholar
Psara, S., Pancucci, M.A. & Panayotidis, P., 1995. Gut contents of the sea urchin Paracentrotus lividus in a Ionian embayment (Amvrakikos Gulf – Greece). Commission. Internationale pour L'Exploration Scientifique de la Mer Mediterranée, Paris, 34, 41.Google Scholar
Patarnello, T., Bisol, P.M. & Battaglia, B., 1989. Studies on differential fitness of PGI genotypes with regard to temperature in Gammarus insesibilis (Crustacea: Amphipoda). Marine Biology, 102, 355359.CrossRefGoogle Scholar
Regis, M.B., 1981. Aspects morphometriques de la croissance de deux Echinoides du Golfe de Marseille, Paracentrotus lividus (LMK) et Arbacia lixula L. Cahiers de Biologie Marine, XXII, 349370.Google Scholar
Richardson, B.J., Baverstock, P.R. & Adams, M., 1986. Allozyme electrophoresis. London: Academic Press Inc.Google Scholar
Safford, S.E. & Booke, E., 1992. Lack of biochemical genetic and morphometric evidence for discrete stocks of northwest Atlantic herring Clupea harengus harengus. Fishery Bulletin. National Oceanic and Atmospheric Administration, Washington DC, 90, 203210.Google Scholar
Shaklee, J.B., Allendorf, F.W., Morizot, D.C. & Whitt, G.S., 1990. Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society, 119, 215.2.3.CO;2>CrossRefGoogle Scholar
Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science, New York, 236, 787792.CrossRefGoogle ScholarPubMed
Skibinski, D.O.F., Beardmore, J.A. & Cross, T.F., 1983. Aspects of the population genetics of Mytilus (Mytilidae; Mollusca) in the British Isles. Biological Journal of Linnean Society of London, 19, 137183.CrossRefGoogle Scholar
Solé-Cava, A.M., Thorpe, J.P. & Todd, C.D., 1994. High genetic similarity between geographically distant populations in a sea anemone with low dispersal capabilities. Journal of the Marine Biological Association of the United Kingdom, 74, 895902.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J., 1981. Biometry. The principles and practices of statistics in biological research, 2nd ed. San Francisco: W.H. Freeman.Google Scholar
Swofford, D.L. & Selander, R.B., 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity, 72, 282283.CrossRefGoogle Scholar
Tortonese, E., 1965. Fauna D'ltalia. Vol. VI. Echinodermata. Bologna: Calderini.Google Scholar
Wright, S., 1943. Isolation by distance. Genetics, 28, 114138.CrossRefGoogle ScholarPubMed
Wright, S., 1969. Evolution and the genetics of populations. Vol. 4. Variability within and among natural populations. Chicago: University of Chicago Press.Google Scholar
Zouros, E. & Foltz, D.W., 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia, 25, 583591.Google Scholar