Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T20:19:28.719Z Has data issue: false hasContentIssue false

Macroalgae from two coastal lagoons of the Gulf of California as indicators of heavy metal contamination by anthropogenic activities

Published online by Cambridge University Press:  27 April 2022

Lia Méndez-Rodríguez
Affiliation:
Centro de Investigaciones Biológicas del Noroeste, S.C., Campus La Paz. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23096, México
Alejandra Piñón-Gimate*
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR). Av. Instituto Politécnico Nacional sn, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23096, México
Margarita Casas-Valdez
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR). Av. Instituto Politécnico Nacional sn, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23096, México
Rafael Cervantes-Duarte
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR). Av. Instituto Politécnico Nacional sn, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23096, México
José Alfredo Arreola-Lizárraga
Affiliation:
Centro de Investigaciones Biológicas del Noroeste, S.C., Campus Guaymas. Carretera a las Tinajas, kilómetro 2.3, predio El Tular, Guaymas, Sonora 85454, México
*
Author for correspondence: Alejandra Piñón-Gimate, E-mail: ale_pinion@hotmail.com

Abstract

Metal concentrations in coastal zones are a critical study subject since anthropogenic activities surrounding these zones are increasing and affecting environmental concentrations of metals. Macroalgae have been used as biomonitors since they can act as indicators of metal concentrations in the water column. Tissue samples of three abundant macroalgae species (Spyridia filamentosa, Padina mexicana and Ulva ohnoi) were collected from three sites with different anthropogenic impacts at La Paz Bay and Guaymas Bay, Mexico, during three contrasting seasons (dry, rainy and cold) in the year 2016. Tissue concentrations of iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni), cadmium (Cd) and lead (Pb) were determined by atomic absorption spectrophotometry. The highest concentrations were found in S. filamentosa inhabiting both bays. The highest Cd and Mn concentrations were recorded in algae from La Paz Bay, while the highest concentrations of Cu, Zn, Pb and Fe were recorded in algae from Guaymas Bay. Metal concentrations varied seasonally; the highest Fe, Cu, Zn, Ni and Pb levels were recorded in the cold season in algae from both bays. S. filamentosa concentrated more Fe, Ni, Cu, Zn and Pb, while P. mexicana and U. ohnoi showed higher Mn and Cd. Therefore, S. filamentosa proved to be the most suitable indicator of metal concentrations, followed by P. mexicana and U. ohnoi. The high metal concentrations recorded in algae from San Juan de la Costa, La Paz Bay, are related to mining activities, whereas those in algae from Guaymas Bay are related to canneries, maritime traffic and others.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agadi, VV, Bhosle, NB and Untawale, AG (1978) Metal concentration in some seaweeds of Goa (India). Botanica Marina 21, 247250.CrossRefGoogle Scholar
Akcali, I and Kucuksezgin, F (2011) A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Marine Pollution Bulletin 62, 637645.CrossRefGoogle ScholarPubMed
Astorga-España, MS, Calisto-Ulloa, NC and Guerrero, S (2008) Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile. Bulletin of Environmental Contamination and Toxicology 80, 97101.CrossRefGoogle ScholarPubMed
Ballesteros, E, Torras-Bouldú, X, Pinedo, S, García, M, Mangialajo, M and de Torres, M (2007) A new methodology based on littoral community cartography for the implementation of the European water framework directive. Marine Pollution Bulletin 55, 172180.CrossRefGoogle ScholarPubMed
Biggs, TW and D'Anna, H (2012) Rapid increase in copper concentrations in a new marina, San Diego Bay. Marine Pollution Bulletin 64, 627635.CrossRefGoogle Scholar
Bonanno, G, Veneziano, V and Piccione, V (2020) The alga Ulva lactuca (Ulvaceae, Chlorophyta) as a bioindicator of trace element contamination along the coast of Sicily, Italy. Science of the Total Environment 699, 134329.CrossRefGoogle ScholarPubMed
Brito, GB, de Souza, TL, Costa, FDN, Moura, CW and Korn, MGA (2016) Baseline trace elements in the seagrass Halodule wrightii Aschers (Cymodoceaceae) from Todos os Santos Bay, Bahia, Brazil. Marine Pollution Bulletin 104, 335342.CrossRefGoogle Scholar
Bryan, GW and Langston, WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution 76, 89131.CrossRefGoogle ScholarPubMed
Buat-Menard, P and Chesselet, R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters 42, 399411.CrossRefGoogle Scholar
Burdon-Jones, C, Denton, GRW, Jones, GB and McPhic, KA (1975) Metal in Marine Organisms: Part I. Baseline Survey. Progress Report to the Water Qual. Queensland 4000, Council, Dept. Local Govt., 105 pp.Google Scholar
Caixue, Z, Fujin, B, Xingli, S and Chun-Liang, C (2010) Trace elements of spring and winter macroalgae in Liusha Bay. Oceanologia et Limnologia Sinica 41, 154160.Google Scholar
Cervantes-Duarte, R, González-Rodríguez, E, Funes-Rodríguez, R, Ramos-Rodríguez, A, Torres-Hernández, MY and Aguirre-Bahena, F (2021) Variability of net primary productivity and associated biophysical drivers in Bahía de La Paz (Mexico). Remote Sensing 13, 1644.CrossRefGoogle Scholar
Chakraborty, S, Bhattacharya, T, Singh, G and Maity, JP (2014) Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment. Ecotoxicology and Environmental Safety 100, 6168.CrossRefGoogle ScholarPubMed
Chávez-Sánchez, T (2012) Composición y abundancia de especies de florecimientos macroalgales y su relación con variables ambientales en la Ensenada de La Paz, Baja California Sur. Master's thesis, Centro de Investigaciones Biológicas del Noroeste, Baja California Sur, Mexico.Google Scholar
Chávez-Sánchez, T, Piñón-Gimate, A, Serviere-Zaragoza, E, López-Bautista, JM and Casas-Valdez, M (2018) Ulva blooms in the southwestern Gulf of California: reproduction and biomass. Estuaries Coastal and Shelf Science 200, 202211.CrossRefGoogle Scholar
Conti, ME and Cecchetti, G (2003) A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas. Environmental Research 93, 99112.CrossRefGoogle ScholarPubMed
Contreras, L, Mella, D, Moenne, A and Correa, JA (2009) Differential responses to copper induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquatic Toxicology 94, 94102.CrossRefGoogle Scholar
Demina, LL, Galkin, SV and Shumilin, E (2009) Bioaccumulation of some trace elements in the biota of hydrothermal fields of the Guaymas Basin (Gulf of California). Boletín de la Sociedad Geológica Mexicana 61, 3145.CrossRefGoogle Scholar
dos Santos, RW, Schmidt, EC, de, LFMR, Polo, LK, Kreusch, M, Pereira, DT, Costa, GB, Simioni, C, Chow, F, Ramlov, F, Maraschin, M and Bouzon, ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotoxicology and Environmental Safety 105, 8089.Google ScholarPubMed
Evans, LK and Edwards, MS (2011) Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera. Algae 26, 265275.CrossRefGoogle Scholar
Farias, DR, Hurd, CL, Eriksen, RS and Macleod, CK (2018) Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. Marine Pollution Bulletin 128, 175184.CrossRefGoogle ScholarPubMed
Föllmi, KB, Schöllhorn, I, Ulianov, A, Adatte, T, Spangenberg, JE, de Kaenel, E and Garrison, RE (2019) Phosphogenesis during the Cenozoic transition from greenhouse to icehouse conditions: upper Oligocene to lower Miocene siliceous, phosphate, and organic rich sediments near La Purísima, Baja California Sur, Mexico. The Depositional Record 5, 2352.CrossRefGoogle Scholar
García-Sifuentes, C, Pacheco-Aguilar, R, Valdez-Hurtado, S, Márquez-Ríos, E, Lugo-Sánchez, M and Ezquerra-Brauer, J (2009) Impact of stickwater produced by the fishery industry; treatment and uses. Journal of Food 7, 6777.Google Scholar
Giusti, L (2001) Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear River and the Tees River. Environment International 26, 275286.CrossRefGoogle ScholarPubMed
Gosavi, K, Sammut, J, Gifford, S and Jankowski, J (2004) Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds. Science of the Total Environment 324, 2539.CrossRefGoogle ScholarPubMed
Guiry, MD and Guiry, GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at https://www.algaebase.org (Accessed online 07 July 2021).Google Scholar
Hashim, MA and Chu, KH (2004) Biosorption of cadmium by brown, green and red seaweeds. Chemical Engineering Journal 97, 249255.CrossRefGoogle Scholar
Hatje, V, de Souza, MM, Ribeiro, LF, Eça, GF and Barros, F (2016) Detection of environmental impacts of shrimp farming through multiple lines of evidence. Environmental Pollution 219, 672684.CrossRefGoogle ScholarPubMed
Hawk, A, Melsom, S and Omang, S (1974) Estimation of heavy metal pollution in two Norwegian fjord areas by analysis of the brown alga Ascophyllum nodosum. Environmental Pollution 7, 179192.Google Scholar
Hernández-Almaraz, P, Méndez-Rodríguez, L, Zenteno-Savin, T, O'Hara, TM, Harley, JR and Serviere-Zaragoza, E (2016) Concentrations of trace elements in sea urchins and macroalgae commonly present in Sargassum beds: implications for trophic transfer. Ecological Research 31, 785798.CrossRefGoogle Scholar
Hernández-Almaraz, P, Méndez-Rodríguez, L, Zenteno-Savín, T, García-Domínguez, F, Vázquez-Botello, A and Serviere-Zaragoza, E (2014) Metal mobility and bioaccumulation differences at lower trophic levels in marine ecosystems dominated by Sargassum species. Journal of the Marine Biological Association of the United Kingdom 94, 435442.CrossRefGoogle Scholar
Hiraoka, M, Shimada, S, Uenosono, M and Masuda, M (2004) A new green-tide-forming alga, Ulva ohnoi Hiraoka and Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycological Research 52, 1729.CrossRefGoogle Scholar
Huerta-Díaz, M, De León-Chavira, F, Lares, MA, Chee-Barragán, A and Siqueiros-Valencia, A (2007) Iron, manganese and trace metal concentrations in seaweeds from central west coast of the Gulf of California. Applied Geochemistry 22, 13801392.CrossRefGoogle Scholar
Instituto Nacional de Estadística y Geografía-INEGI (México) (2010) Anuario Estadístico de Baja California. Instituto Nacional de Estadística y Geografía, Gobierno del Estado de Baja California Sur, México. 62 pp.Google Scholar
Jara-Marini, ME, Molina-García, A, Martínez-Durazo, A and Páez-Osuna, F (2020) Trace metal trophic transference and biomagnification in a semiarid coastal lagoon impacted by agriculture and shrimp aquaculture. Environmental Science and Pollution Research 27, 53235336.CrossRefGoogle Scholar
Jara-Marini, ME, Soto-Jiménez, MF and Páez-Osuna, F (2009) Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California. Chemosphere 77, 13661373.Google Scholar
Jara-Marini, ME, Tapia-Alcaraz, JN, Dumer-Gutiérrez, JA, García-Rico, L, García-Hernández, J and Páez-Osuna, F (2013 a) Comparative bioaccumulation of trace metals using six filter feeder organisms in a coastal lagoon ecosystem (of the central-east Gulf of California). Environmental Monitoring and Assessment 185, 10711085.CrossRefGoogle Scholar
Jara-Marini, ME, Tapia-Alcaraz, JN, Dumer-Gutiérrez, JA, García-Rico, L, García-Hernández, J and Páez-Osuna, F (2013 b) Distribution and accumulation of Cd, Cu, Hg, Pb and Zn in the surface sediments of El Tóbari lagoon, central-east Gulf of California: an ecosystem associated with agriculture and aquaculture activities. Journal of Environmental Science and Health Part A 48, 18421851.CrossRefGoogle ScholarPubMed
Juanes, JA, Guinda, X, Puente, A and Revilla, JA (2008) Macroalgae, a suitable indicator of the ecological status of coastal rocky communities in the NE Atlantic. Ecological Indicators 8, 351359.CrossRefGoogle Scholar
Kaushik, G, Satya, S and Naik, SN (2009) Food processing: a tool to pesticide residue dissipation – a review. Food Research International 42, 2640.CrossRefGoogle Scholar
Khaled, A, Hessein, A, Abdel-Halim, AM and Morsy, FM (2014) Distribution of heavy metals in seaweeds collected along Marsa-Matrouh beaches, Egyptian Mediterranean Sea. Egyptian Journal of Aquatic Research 40, 363371.CrossRefGoogle Scholar
Kjerfve, B and Magill, KE (1989) Geographic and hydrodynamic characteristics of shallow coastal lagoons. Marine Geology 88, 187199.CrossRefGoogle Scholar
Kot, FS, Green-Ruiz, C, Páez-Osuna, F, Shumillin, E and Rodríguez-Meza, D (1999) Distribution of mercury in sediments from La Paz lagoon, Peninsula of Baja California, México. Bulletin of Environmental Contamination and Toxicology 63, 4551.CrossRefGoogle Scholar
Lobban, CS and Harrison, PJ (1994) Seaweed Ecology and Physiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Loska, K, Cebula, J, Pelczar, J, Wiechuła, D and Kwapuliński, J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, and Soil Pollution 93, 347365.CrossRefGoogle Scholar
Luoma, SN (1983) Bioavailability of trace metals to aquatic organisms – a review. Science of the Total Environment 28, 122.CrossRefGoogle ScholarPubMed
Marín-Guirao, L, Lloret, J and Marin, A (2008) Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining impacted coastal lagoon. Science of the Total Environment 393, 118130.CrossRefGoogle ScholarPubMed
Mason, RP, Reinfelder, JR and Morel, FMM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science Technology 30, 18351845.CrossRefGoogle Scholar
Melton, JT, Collado-Vides, L and López-Bautista, JM (2016) Molecular identification and nutrient analysis of the green tide species Ulva ohnoi Hiraoka & Shimada 2004 (Ulvophyceae, Chlorophyta), a new report and likely nonnative species in the Gulf of Mexico and Atlantic Florida, USA. Aquatic Invasions 11, 225237.Google Scholar
Méndez, L, Acosta, B, Arreola-Lizárraga, A and Padilla, G (2004) Anomalous levels of heavy metals in sediments from Guaymas Bay, Mexico. Bulletin of Environmental Contamination and Toxicology 72, 11011106.CrossRefGoogle ScholarPubMed
Méndez, L, Palacios, E, Acosta, B, Monsalvo-Spencer, P and Álvarez-Castañeda, T (2006) Heavy metals in the clam Megapitaria squalida collected from wild and phosphorite mine-impacted sites in Baja California, Mexico. Biological Trace Element Research 110, 275287.CrossRefGoogle ScholarPubMed
Méndez, L, Salas-Flores, LM, Arreola-Lizarraga, A, Alvarez-Castañeda, ST and Acosta, B (2002) Heavy metals in clams from Guaymas Bay, Mexico. Bulletin of Environmental Contamination and Toxicology 68, 217223.Google ScholarPubMed
Mesa-Zavala, E (2013) Diagnóstico del hábitat del borrego cimarrón (Ovis canadensis Weemsi) en función de variables ambientales y actividades antropogénicas en la sierra el Mechudo, Baja California Sur, México. PhD Thesis, Centro de Investigaciones Biológicas del Noroeste, S.C, Baja California Sur, México.Google Scholar
Monreal-Gómez, MA, Molina-Cruz, A and Salas-de León, DA (2001) Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1988. Journal of Marine Systems 30, 305331.CrossRefGoogle Scholar
Moore, JV and Ramamurti, S (1987) Heavy Metals in Near Bottom Water. Moscow: Mir Publishers, p. 285.Google Scholar
Norris, JN (2010) Marine algae of the Northern Gulf of California: Chlorophyta and Phaeophyceae. Smithsonian Contributions to Botany 94, 1276.CrossRefGoogle Scholar
Norris, JN (2014) Marine algae of the Northern Gulf of California II: Rhodophyta. Smithsonian Contributions to Botany 96, 1555.CrossRefGoogle Scholar
Nozaki, Y (1997) A fresh look at element distribution in the North Pacific. American Geophysical Union 78. 221. http://earth.agu.org/eos_elec97025e.htmGoogle Scholar
Nziguheba, G and Smolders, E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment 390, 5357.CrossRefGoogle ScholarPubMed
Obeso-Nieblas, M, Shirasago, B, Sánchez-Velasco, L and Gaviño-Rodríguez, JH (2004) Hydrographic variability in Bahia de La Paz, BCS, Mexico, during the 1997–1998 El Niño. Deep Sea Research Part II: Topical Studies in Oceanography 51, 689710.CrossRefGoogle Scholar
Osuna-López, JI, Páez-Osuna, F, Marmolejo-Rivas, C and Ortega-Romero, P (1989) Metales pesados disueltos y particulados en el puerto de mazatlán. Anales del Instituto de Ciencias del Mar y Limnología UNAM México 16, 307320.Google Scholar
Osuna-Ramírez, R, Arreola, JA, Padilla-Arredondo, G, Mendoza-Salgado, RA and Méndez-Rodríguez, LC (2017) Toxicity of wastewater from fishmeal production and their influence on coastal waters. Fresenius Environmental Bulletin 26, 64086412.Google Scholar
Páez-Osuna, F, Álvarez-Borrego, S, Ruiz-Fernández, AC, García-Hernández, J, Jara-Marini, ME, Bergés-Tiznado, ME, Piñón-Gimate, A, Alonso-Rodríguez, R, Soto-Jiménez, MF, Frías-Espericueta, MG, Ruelas-Inzunza, JR, Green-Ruiz, CR, Osuna-Martínez, CC and Sánchez-Cabeza, JA (2017) Environmental status of the Gulf of California: a pollution review. Earth-Science Reviews 166, 181205.CrossRefGoogle Scholar
Páez-Osuna, F and Marmolejo-Rivas, C (1990) Occurrence and seasonal variation of heavy metals in the oyster Saccrostrea iridescens. Bulletin of Environmental Contamination and Toxicology 44, 129134.CrossRefGoogle ScholarPubMed
Páez-Osuna, F, Ochoa-Izaguirre, MJ, Bojórquez-Leyva, H and Michel-Reynoso, IL (2000) Macroalgae as biomonitors of heavy metal availability in coastal lagoons from the subtropical Pacific of Mexico. Bulletin of Environmental Contamination and Toxicology 64, 846851.CrossRefGoogle Scholar
Pan, Y, Wernberg, T, de Bettignies, T, Holmer, M, Li, K, Wu, J, Lin F, Yu Y, Xu J, Zhou C, Huang Z and Xiao, X (2018) Screening of seaweeds in the east China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research 25, 1664016651.CrossRefGoogle ScholarPubMed
Pérez-Tribouillier, H, Shumilin, E and Rodríguez-Figueroa, GM (2015) Trace elements in the marine sediments of the La Paz lagoon, Baja California Peninsula, Mexico: pollution status in 2013. Bulletin of Environmental Contamination and Toxicology 95, 6166.CrossRefGoogle Scholar
Pérez Tribouillier, HU (2014) Niveles actuales e historia de acumulación de elementos de origen natural y antropogénico en los sedimentos de la Laguna de La Paz, Baja California Sur, México. M.S. Thesis, Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Baja California Sur, México. [In Spanish].Google Scholar
Phillips, DJ and Segar, DA (1986) Use of bio-indicators in monitoring conservative contaminants: programme design imperatives. Marine Pollution Bulletin 17, 1017.CrossRefGoogle Scholar
Rai, LC, Gaur, JP and Kumar, HD (1981) Phycology and heavy-metal pollution. Biological Reviews 56, 99151.CrossRefGoogle Scholar
Rainbow, PS (1995) Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin 31, 183192.CrossRefGoogle Scholar
Ródenas de la Rocha, S, Sánchez-Muniz, FJ, Gómez-Juaristi, M and Marín-Larrea, MT (2009) Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. Journal of Food Composition and Analysis 22, 330336.Google Scholar
Rodríguez-Castañeda, AP, Sánchez-Rodríguez, I, Shumilin, E and Sapozhnikov, D (2006) Element concentrations in some species of seaweeds from La Paz Bay and La Paz lagoon, south-western Baja California, Mexico. In Anderson, R, Brodie, J, Onsoy, E and Critcheley, AT (eds), Eighteenth International Seaweed Symposium. Developments in Applied Phycology, Vol. 1. Dordrecht: Springer, pp. 173182.CrossRefGoogle Scholar
Rodríguez-Figueroa, GM, Shumilin, E and Sánchez-Rodríguez, I (2009) Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. Journal of Applied Phycology 21, 1926.CrossRefGoogle Scholar
Ryan, S, McLoughlin, P and O'Donovan, O (2012) A comprehensive study of metal distribution in three main classes of seaweed. Environmental Pollution 167, 171177.CrossRefGoogle ScholarPubMed
Sáez, CA, Lobos, MG, Macaya, EC, Oliva, D, Quiroz, W and Brown, MT (2012) Variation in patterns of metal accumulation in thallus parts of Lessonia trabeculata (Laminariales; Phaeophyceae): implications for biomonitoring. PLoS ONE 7, 110.CrossRefGoogle ScholarPubMed
Sánchez-Rodríguez, I, Huerta-Díaz, MA, Shoumilin, E, Holguín-Quiñones, O and Zertuche-González, JA (2001) Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environmental Pollution 114, 145160.CrossRefGoogle ScholarPubMed
Sarada, B, Prasad, MK, Kumar, KK and Murthy, CVR (2014) Cadmium removal by macro algae Caulerpa fastigiata: characterization, kinetic, isotherm and thermodynamic studies. Journal of Environmental Chemical and Engineering 2, 15331542.CrossRefGoogle Scholar
Say, PJ, Burrows, IG and Whitton, BA (1990) Enteromorpha as a monitor of heavy metals in estuaries. In McLusky, DS, de Jonge, VN and Pomfret J, (eds), North Sea – Estuaries Interactions. Developments in Hydrobiology, Vol. 55. Dordrecht: Springer, pp. 119126.CrossRefGoogle Scholar
Seeliger, U and Edwards, P (1977) Correlation coefficients and concentration factors of copper and lead in seawater and benthic algae. Marine Pollution Bulletin 8, 1619.CrossRefGoogle Scholar
Servicio Geológico Mexicano (2008) Panorama minero del Estado de Baja California Sur. México: Secretaria de Economía, Servicio Geológico Mexicano, Coordinación General de Minería and Secretaría de Gobernación.Google Scholar
Serviere-Zaragoza, E, Lluch-Cota, SE, Mazariegos-Villarreal, A, Balart, EF, Valencia-Valdez, H and Méndez-Rodríguez, LC (2021) Cadmium, lead, copper, zinc, and iron concentration patterns in three marine fish species from two different mining sites inside the Gulf of California, Mexico. International Journal of Environmental Research and Public Health 18, 844.Google ScholarPubMed
Shumilin, E, Kalmykov, S, Sapozhnikov, D, Nava-Sánchez, E, Gorsline, D, Godinez-Orta, L and Rodríguez-Castañeda, A (2000) Major and trace element accumulation in coastal sediments along southeastern Baja California studied by instrumental neutron activation analysis and 210 Pb age-dating. Journal of Radioanalytical and Nuclear Chemistry 246, 533541.CrossRefGoogle Scholar
Smith, RD, Cameron, KL, McDowell, FW, Niemeyer, S and Sampson, DE (1996) Generation of voluminous silicic magmas and formation of mid-Cenozoic crust beneath north-central Mexico: evidence from ignimbrites, associated lavas, deep crustal granulites, and mantle pyroxenites. Contributions to Mineralogy and Petrology 123, 375389.CrossRefGoogle Scholar
Soto-Jiménez, MF, Hibdon, SA, Rankin, CW, Aggarawl, J, Ruiz-Fernandez, AC, Páez-Osuna, F and Flegal, AR (2006) Chronicling a century of lead pollution in Mexico: stable lead isotopic composition analyses of dated sediment cores. Environmental Science and Technology 40, 764770.CrossRefGoogle ScholarPubMed
StatSoft (2007) STATISTICA (Data Analysis Software System), Version 8.0. Tulsa, OK: StatSoft, Inc.Google Scholar
Stengel, DB, Macken, A, Morrison, L and Morley, N (2004) Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Marine Pollution Bulletin 48, 902909.CrossRefGoogle Scholar
Storelli, MM, Storelli, A and Marcotrigiano, GO (2001) Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy: macroalgae, sediments and benthic species. Environment International 26, 505509.CrossRefGoogle ScholarPubMed
Strezov, A and Nonova, T (2003) Monitoring of Fe, Mn, Cu, Pb and Cd levels in two brown macroalgae from the Bulgarian Black Sea coast. International Journal of Environmental Analytical Chemistry 83, 10451054.Google Scholar
Turner, A, Pedroso, SS and Brown, MT (2008) Influence of salinity and humic substances on the uptake of trace metals by the marine macroalga, Ulva lactuca: experimental observations and modelling using WHAM. Marine Chemistry 110, 176184.Google Scholar
Vargas-González, HH, Arreola-Lizárraga, JA, García-Hernández, J, Mendoza-Salgado, RA, Zenteno-Savín, T and Méndez-Rodríguez, LC (2017) Calidad de sedimentos asociada a actividades antrópicas en lagunas costeras semiáridas subtropicales de la costa central este del Golfo de California. Revista Internacional Contaminación Ambiental 33, 722.CrossRefGoogle Scholar
Vasconcelos, MTS and Leal, MFC (2001) Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Marine Chemistry 74, 6585.CrossRefGoogle Scholar
Vizzini, S, Costa, V, Tramati, C, Gianguzza, P and Mazzola, P (2013) Trophic transfer of trace elements in an isotopically constructed food chain from a semi-enclosed marine coastal area (Stagnone di Marsala, Sicily, Mediterranean). Archives of Environmental Contamination and Toxicology 65, 42653.CrossRefGoogle Scholar
Volterra, L and Conti, ME (2000) Algae as biomarkers, bioaccumulators and toxin producers. International Journal of Environment and Pollution 13, 92125.CrossRefGoogle Scholar
Wedepohl, KH (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 12171232.CrossRefGoogle Scholar
Zar, JH (2010) Biostatistical Analysis. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar