Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:52:32.266Z Has data issue: false hasContentIssue false

Iron, Chelation and the Growth of Marine Phytoplankton I. Growth Kinetics and Chlorophyll Production in Cultures of the Euryhaline Flagellate Dunalliela Tertiolecta under Iron-Limiting Conditions

Published online by Cambridge University Press:  11 May 2009

Anthony G. Davies
Affiliation:
Marine Biological Association, Plymouth

Extract

One of the major advances made in the development of media for the culture of marine phytoplankton was the introduction of chelating agents as a means of controlling the concentrations of the trace metals necessary for plant growth; an excellent historical survey of this field has been provided by Provasoli, McLaughlin and Droop (1957). Much of the discussion concerning the role of the chelating agents has centred upon the maintenance of the iron in solution at concentrations adequate for plant nutrition (Droop, 1961; Provasoli, 1963; Johnston, 1964). In the absence of chelators, the pH of the culture media would result in almost complete precipitation of the iron.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caperon, J., 1967. Population growth in micro-organisms limited by food supply. Ecology, Vol. 48, pp. 715–22.CrossRefGoogle ScholarPubMed
Davies, A. G., 1966. Studies of the accumulation of radio-iron by a marine diatom. In Radioecological Concentration Processes. Proc. int. Symp. Stockholm, April, 1966 (ed. B., Åberg & Hungate, F. P.), pp. 983–91. Oxford: Pergamon Press.Google Scholar
Davies, A. G., 1968. On the adhesion of colloidal hydrous ferric oxide to glass. J. colloid interface Sci., Vol. 28, pp. 4853.CrossRefGoogle Scholar
Dean, A. C. R. & Hinshelwood, C. N., 1966. Growth, Function and Regulation in Bacterial Cells. 439 pp. Oxford: Clarendon Press.Google Scholar
Droop, M. R., 1961. Some chemical considerations in the design of synthetic culture media for marine algae. Botanica mar., Vol. 2, pp. 231–46.CrossRefGoogle Scholar
Droop, M. R., 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. mar. biol. Ass. U.K., Vol. 48, pp. 689733.CrossRefGoogle Scholar
Duursma, E. K. & Sevenhuysen, W., 1966. Note on chelation and solubility of certain metals in sea water at different pH values. Neth. J. Sea Res., Vol. 3, pp. 95106.CrossRefGoogle Scholar
Eppley, R. W. & Strickland, J. D. H., 1968. Kinetics of marine phytoplankton growth. Adv. microbiol. Sea, Vol. 1, pp. 2362. London: Academic Press.Google Scholar
Goldberg, E. D., 1952. Iron assimilation by marine diatoms. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 102, pp. 243–8.CrossRefGoogle Scholar
Harvey, H. W., 1937. The supply of iron to diatoms. J. mar. biol. Ass. U.K., Vol. 22, pp. 205–19.CrossRefGoogle Scholar
Hayward, J., 1968. Studies on the growth of Phaeodactylum tricornutum. III. The effect of iron on growth. J. mar. biol. Ass. U.K., Vol. 48, pp. 295302.CrossRefGoogle Scholar
Herbert, D., Ellsworth, R. & Telling, R. C., 1956. The continuous culture of bacteria; a theoretical and experimental study. J.gen. Microbiol., Vol. 14, pp. 601–22.CrossRefGoogle ScholarPubMed
Johnston, R., 1964. Sea water, the natural medium of phytoplankton. II. Trace metals and chelation, and general discussion. J. mar. biol. Ass. U.K., Vol. 44, pp. 87109.CrossRefGoogle Scholar
Kuenzler, E. J. & Ketchum, B. H., 1962. Rate of phosphorus uptake by Phaeodactylum tricornutum. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 123, pp. 134–45.CrossRefGoogle Scholar
Monod, J., 1942. Recherches sur la croissance des cultures bactériennes. 210 pp. Paris: Hermann.Google Scholar
O'kelley, J. C., 1968. Mineral nutrition of algae. A. Rev. Pl. Physiol., Vol. 19, pp. 89112.CrossRefGoogle Scholar
Page, E. R., 1966. Sideramines in plants and their possible role in iron metabolism. Biochem. J., Vol. 100, p. 34P.Google Scholar
Prelog, V., 1964. Iron-containing compounds in micro-organisms. In Iron Metabolism (ed. F., Gross), pp. 7383. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Price, C. A., 1968. Iron compounds and plant nutrition. A. Rev. Pl. Physiol., Vol. 19, pp. 239–48.CrossRefGoogle Scholar
Provasoli, L., 1963. Organic regulation of phytoplankton fertility. In The Sea (ed. Hill, M. N.), Vol. 2, pp. 165219. London: Interscience Publ.Google Scholar
Provasoli, L., McLaughlin, J. J. A. & Droop, M. R., 1957. The development of artificial media for marine algae. Arch. Mikrobiol., Vol. 25, pp. 392428.CrossRefGoogle ScholarPubMed
Sillen, L. G., 1961. The physical chemistry of sea water. In Oceanography (ed. M., Sears), pp. 549–81. Washington, D.C.: American Association for the Advancement of Science.Google Scholar
Spencer, C. P., 1952. On the use of antibiotics for isolating bacteria-free cultures of marine phytoplankton organisms. J. mar. biol. Ass. U.K., Vol. 31, pp. 97106.CrossRefGoogle Scholar
Strickland, J. D. H. & Parsons, T. R., 1965. A manual of sea water analysis. Bull. Fish. Res. Bd Can., No. 125.Google Scholar
Thomas, W. H. & Dodson, A. N., 1968. Effects of phosphate concentration on cell division rates and yield of a tropical oceanic diatom. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 134, pp. 199208.CrossRefGoogle ScholarPubMed