Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:56:06.694Z Has data issue: false hasContentIssue false

UNEXPECTED SUBSPACES OF TENSOR PRODUCTS

Published online by Cambridge University Press:  25 October 2006

FÉLIX CABELLO SÁNCHEZ
Affiliation:
Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spainfcabello@unex.es
DAVID PÉREZ-GARCÍA
Affiliation:
Área de Matemática Aplicada, Departamento de Matemáticas y Física Aplicadas y Ciencias de la Naturaleza, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Edificio Departamental II, 28933 Móstoles (Madrid), Spaindavid.perez.garcia@urjc.es
IGNACIO VILLANUEVA
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spainignaciov@mat.ucm.es
Get access

Abstract

We describe complemented copies of $\ell_2$ both in $C(K_1)\hat{\otimes}_{\pi} C(K_2)$ when at least one of the compact spaces $K_i$ is not scattered and in $L_1(\mu_1)\hat{\otimes}_{\epsilon} L_1(\mu_2)$ when at least one of the measures is not atomic. The corresponding local construction gives uniformly complemented copies of the $\ell_2^n$ in $c_0\hat{\otimes}_{\pi} c_0$. We continue the study of $c_0\hat{\otimes}_{\pi} c_0$ showing that it contains a complemented copy of Stegall's space $c_0(\ell_2^n)$ and proving that $(c_0\ppi c_0)''$ is isomorphic to $\ell_\infty(\ell_\infty^n\hat{\otimes}_{\pi} \ell_\infty^n)$, together with other results. In the last section we use Hardy spaces to find an isomorphic copy of $L_p$ in the space of compact operators from $L_q$ to $L_r$, where $1<p,q,r<\infty$ and $1/r=1/p+1/q$.

Keywords

Type
Notes and Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partially supported by BMF 2001-1240 and MTM 2004-02635.