Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:00:56.989Z Has data issue: false hasContentIssue false

PROFINITE GROUPS WITH MULTIPLICATIVE PROBABILISTIC ZETA FUNCTION

Published online by Cambridge University Press:  23 July 2004

E. DETOMI
Affiliation:
Dipartimento di Matematica, Università di Brescia, Via Valotti 9, 25133 Brescia, Italydetomi@ing.unibs.it, lucchini@ing.unibs.it Current address: Dipartimento di Matematica, Università di Padova, via Belzoni 7, 35131 Padova, Italydetomi@math.unipd.it
A. LUCCHINI
Affiliation:
Dipartimento di Matematica, Università di Brescia, Via Valotti 9, 25133 Brescia, Italydetomi@ing.unibs.it, lucchini@ing.unibs.it
Get access

Abstract

To a finitely generated profinite group $G$, a formal Dirichlet series $P_G(s)\,{=}\,\sum_{n}{a_n}/{n^s}$ is associated, where $a_n \,{=}\,\sum_{|G:H|=n} \mu_G(H)$. It is proved that $G$ is prosoluble if and only if the sequence $\{a_n\}_{n \in \mathbb N}$ is multiplicative, that is, $a_{rs}\,{=}\,a_ra_s$ for any pair of coprime positive integers $r$ and $s$. This extends the analogous result on the probabilistic zeta function of finite groups.

Keywords

Type
Notes and Papers
Copyright
The London Mathematical Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by MIUR (project ‘Teoria dei gruppi e applicazioni’).