Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T23:36:57.855Z Has data issue: false hasContentIssue false

PERIODIC SOLUTIONS OF LIÉNARD EQUATIONS WITH ASYMMETRIC NONLINEARITIES AT RESONANCE

Published online by Cambridge University Press:  08 August 2003

ANNA CAPIETTO
Affiliation:
Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italycapietto@dm.unito.it
ZAIHONG WANG
Affiliation:
Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy Department of Mathematics, Capital Normal University, Beijing 100037 Chinazhwang@mail.cnu.edu.cn
Get access

Abstract

The existence of $2\pi$-periodic solutions of the second-order differential equation \[ x''+f(x)x'+ax^+-bx^-+g(x)=p(t), \qquad n\in \mathbb{N},\] where $a, b$ satisfy $1/\sqrt{a}+1/\sqrt{b}=2/n$ and $p(t)=p(t+2\pi)$, $t\in \mathbb{R}$, is examined. Assume that limits $\lim_{x\to\pm\infty}F(x)=F(\pm\infty)$ ($F(x)=\int_0^xf(u) du$) and $\lim_{x\to\pm\infty}g(x)=g(\pm\infty)$ exist and are finite. It is proved that the equation has at least one $2\pi$-periodic solution provided that the zeros of the function $\Sigma_1$ are simple and the zeros of the functions $\Sigma_1, \Sigma_2$ are different and the signs of $\Sigma_2$ at the zeros of $\Sigma_1$ in $[0,2\pi/n)$ do not change or change more than two times, where $\Sigma_1$ and $\Sigma_2$ are defined as follows: \[\Sigma_1(\theta)=\frac{n}{\pi}\left[\frac{g(+\infty)}{a}-\frac{g(-\infty)}{b} \right]-\frac {1}{2\pi}\int_0^{2\pi}p(t)\varphi(t+\theta)\,dt,\qquad \theta\in [0, 2\pi/n],\]\[\Sigma_2(\theta)=\frac{n}{\pi}[F(+\infty)-F(-\infty)]-\frac{1}{2\pi} \int_0^{2\pi}p(t)\varphi'(t+\theta)\,dt, \qquad\theta\in [0, 2\pi/n].\] Moreover, it is also proved that the given equation has at least one $2\pi$-periodic solution provided that the following conditions hold: \begin{eqnarray*} -\infty&<&\liminf_{x\to\pm\infty}\frac{F(x)}{|x|^{p-2}x}\le \limsup_ {x\to\pm\infty}\frac{F(x)}{|x|^{p-2}x}<+\infty,\\ 0&<&\liminf_{x\to\pm\infty}\frac{g(x)}{|x|^{q-2}x}\leq \limsup_{x\to\pm\infty} \frac{g(x)}{|x|^{q-2}x}<+\infty, \end{eqnarray*} with $1\leq p<q<2$.

Keywords

Type
Notes and Papers
Copyright
The London Mathematical Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)