Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T01:57:17.778Z Has data issue: false hasContentIssue false

ON THE NORM OF ELEMENTARY OPERATORS

Published online by Cambridge University Press:  01 October 2004

A. BLANCO
Affiliation:
Département de Mathématiques et de Statistique, Université Laval, Québec, Canada G1K 7P4
M. BOUMAZGOUR
Affiliation:
Département de Mathématiques et de Statistique, Université Laval, Québec, Canada G1K 7P4
T. J. RANSFORD
Affiliation:
Département de Mathématiques et de Statistique, Université Laval, Québec, Canada G1K 7P4
Get access

Abstract

The norm problem is considered for elementary operators of the form $U_{a,b}\,{:}\,{\cal A}\,{\longrightarrow}\,{\cal A},\;x\longmapsto axb\,{+}\,bxa (a,\,b\,{\in}\,{\cal A})$ in the special case when ${\cal A}$ is a subalgebra of the algebra of bounded operators on a Banach space. In particular, the lower estimate $\|U_{a,b}\|\geq\|a\|\|b\|$ is established when the Banach space is a Hilbert space and ${\cal A}$ is the algebra of all bounded linear operators.

Type
Notes and Papers
Copyright
The London Mathematical Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)