Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T09:54:31.577Z Has data issue: false hasContentIssue false

ON $L^p$–$L^q$ TRACE INEQUALITIES

Published online by Cambridge University Press:  25 October 2006

CARME CASCANTE
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spaincascante@ub.edu
JOAQUIN M. ORTEGA
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spainortega@ub.edu
IGOR E. VERBITSKY
Affiliation:
Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USAigor@math.missouri.edu
Get access

Abstract

We give necessary and sufficient conditions in order that inequalities of the type

\[ \| T_K f\|_{L^q(d\mu)}\leq C \|f\|_{L^p(d\sigma)}, \quad f \in L^p(d\sigma), \]

hold for a class of integral operators $T_K f(x) = \int_{R^n} K(x,y) f(y)\,d \sigma(y)$ with nonnegative kernels, and measures $d \mu$ and $d\sigma$ on $\mathbb{R}^n$, in the case where $p>q>0$ and $p>1$.

An important model is provided by the dyadic integral operator with kernel $K_{\mathcal D}(x, y)= \sum_{Q\in{\mathcal D}} K(Q)\chi_Q(x) \chi_Q(y)$, where $\mathcal D=\{Q\}$ is the family of all dyadic cubes in $\mathbb{R}^n$, and $K(Q)$ are arbitrary nonnegative constants associated with $Q \in{\mathcal D}$.

The corresponding continuous versions are deduced from their dyadic counterparts. In particular, we show that, for the convolution operator $T_k f = k \star f$ with positive radially decreasing kernel $k(|x-y|)$, the trace inequality

\[\| T_k f\|_{L^q(d\mu)}\leq C \|f\|_{L^p(d x)}, \quad f \in L^p(dx),\]

holds if and only if ${\mathcal W}_{k}[\mu] \in L^s (d\mu)$, where $s = q(p-1)/(p-q)$. Here ${\mathcal W}_{k}[\mu]$ is a nonlinear Wolff potential defined by ${\mathcal W}_{k}[\mu](x)=\int_0^{+\infty} k(r) \bar{k}(r)^{1/(p-1)} \mu(B(x,r))^{1/(p-1)} r^{n-1} \, dr$, and $\bar{k}(r)=(1/r^n)\int_0^r k(t) t^{n-1} \, dt$. Analogous inequalities for $1\le q < p$ were characterized earlier by the authors using a different method which is not applicable when $q<1$.

Keywords

Type
Notes and Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first and second authors were supported in part by DGICYT Grant MTM2005-08984-C02-02, and Grant 2005SGR 00611 from the Generalitat de Catalunya. The third author was supported in part by NSF Grant DMS-0070623.