Published online by Cambridge University Press: 23 July 2004
A locally projective amalgam is formed by the stabilizer $G(x)$ of a vertex $x$ and the global stabilizer $G\{x,y\}$ of an edge containing $x$ in a group $G$, acting faithfully and locally finitely on a connected graph $\Gm$ of valency $2^n\,{-}\,1$ so that (i) the action is 2-arc-transitive, (ii) the sub-constituent $G(x)^{\Gm(x)}$ is the linear group ${\rm SL}_n(2) \,{\cong}\, {\rm L}_n(2)$ in its natural doubly transitive action, and (iii) $[t,G\{x,y\}] \,{\le}\, O_2(G(x) \,{\cap}\, G\{x,y\})$ for some $t \,{\in}\, G\{x,y\} \setminus G(x)$. Djoković and Miller used the classical Tutte theorem to show that there are seven locally projective amalgams for $n\,{=}\,2$. Trofimov's theorem was used by the first author and Shpectorov to extend the classification to the case $n \,{\ge}\, 3$. It turned out that for $n\,{\geq}\,3$, besides two infinite series of locally projective amalgams (embedded into the groups ${\rm AGL}_n(2)$ and $O_{2n}^+(2)$), there are exactly twelve exceptional ones. Some of the exceptional amalgams are embedded into sporadic simple groups $M_{22}$, $M_{23}$, $Co_2$, $J_4$ and $\hbox{\it BM}$. For a locally projective amalgam $\cA$, the minimal degree $m\,{=}\,m(\cA)$ of its complex representation (which is a faithful completion into ${\rm GL}_m(\CC)$) is calculated. The minimal representations are analysed and three open questions on exceptional locally projective amalgams are answered. It is shown that
$\cA_4^{(1)}$ possesses ${\rm SL}_{20}(13)$ as a faithful completion in which the third geometric subgroup is improper;
$\cA_4^{(2)}$ possesses the alternating group ${\rm Alt}_{64}$ as a completion constrained at levels 2 and 3;
$\cA_4^{(5)}$ possesses ${\rm Alt}_{256}$ as a completion which is constrained at level 2 but not at level 3.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.