Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T22:07:01.554Z Has data issue: false hasContentIssue false

$L^p-L^q$ ESTIMATES FOR PARABOLIC SYSTEMS IN NON-DIVERGENCE FORM WITH VMO COEFFICIENTS

Published online by Cambridge University Press:  04 January 2007

ROBERT HALLER-DINTELMANN
Affiliation:
Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstraße 7, D-64289 Darmstadt, Germanyhaller@mathematik.tu-darmstadt.de
HORST HECK
Affiliation:
Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstraße 7, D-64289 Darmstadt, Germanyheck@mathematik.tu-darmstadt.de
MATTHIAS HIEBER
Affiliation:
Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstraße 7, D-64289 Darmstadt, Germanyhieber@mathematik.tu-darmstadt.de
Get access

Abstract

Consider a parabolic $N\times N$-system of order $m$ on $\mathbb{R}^n$ with top-order coefficients $a_\alpha \in \mathrm{VMO} \cap L^\infty$. Let $1<p,q < \infty$ and let $\omega$ be a Muckenhoupt weight. It is proved that systems of this kind possess a unique solution $u$ satisfying

$$\|u'\|_{L^q(J;L^p_\omega(\mathbb{R}^n)^N)} + \|\mathcal{A} u\|_{L^q(J;L^p_\omega(\mathbb{R}^n)^N)} \le C \|f\|_{L^q(J;L^p_\omega(\mathbb{R}^n)^N)},$$

where $\mathcal{A} u = \sum_{|\alpha| \le m}a_\alpha D^\alpha u$ and $J=[0,\infty)$. In particular, choosing $\omega =1$, the realization of $\mathcal{A}$ in $L^p({\mathbb{R}}^n)^N$ has maximal $L^p-L^q$ regularity.

Type
Notes and Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by the Deutsche Forschungsgemeinschaft (DFG) by the project ‘Regularity properties of elliptic and parabolic equations’.