Published online by Cambridge University Press: 03 December 2004
The theory of order $p$ linear differential equations with univalued solutions can be presented in terms of the Schubert calculus in the Grassmannian of $p$-dimensional subspaces of the vector space of complex polynomials in one variable. The regular singular points and the exponents of an equation determine an intersection of Schubert varieties.
Heine and Stieltjes in their studies of order $p = 2$ linear differential equations with polynomial coefficients having a polynomial solution of a prescribed degree discovered that such a solution was given by a critical point of a certain remarkable symmetric function. In terms of the Schubert calculus, the critical points determine the elements of the intersection of Schubert varieties.
The case $p > 2$ is studied. A function whose critical points determine the non-degenerate elements in the intersection of Schubert varieties is presented. The number of Fuchsian equations with univalued solutions and prescribed exponents at singular points is estimated from above by the intersection number of the corresponding Schubert classes. Conjecturally, for generic disposition of singular points, these numbers coincide, that is, the intersection of Schubert varieties is transversal and consists of non-degenerate elements only. For $p = 2$ the conjecture was proved earlier by the author.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.