Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:33:00.275Z Has data issue: false hasContentIssue false

infinite families of pairs of curves over $\mathbb q$ with isomorphic jacobians

Published online by Cambridge University Press:  04 October 2005

everett w. howe
Affiliation:
center for communications research, 4320 westerra court, san diego, ca 92121-1967, usahowever@alumni.caltech.edu
Get access

Abstract

three families of pairs of curves are presented; each pair consists of geometrically non-isomorphic curves whose jacobians are isomorphic to one another as unpolarized abelian varieties. each family is parametrized by an open subset of ${\mathbb p}^1$. the first family consists of pairs of genus-2 curves whose equations are given by simple expressions in the parameter; the curves in this family have reducible jacobians. the second family also consists of pairs of genus-2 curves, but generically the curves in this family have absolutely simple jacobians. the third family consists of pairs of genus-3 curves, one member of each pair being a hyperelliptic curve and the other a plane quartic. examples from these families show that in general it is impossible to tell from the jacobian of a genus-2 curve over $\mathbb q$ whether or not the curve has rational points – or indeed whether or not it has real points. the families are constructed using methods that depend on earlier joint work with franck leprévost and bjorn poonen, and on peter bending's explicit description of the curves of genus 2 whose jacobians have real multiplication by $\mathbb z[\sqrt{2}]$.

Type
notes and papers
Copyright
the london mathematical society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)