Published online by Cambridge University Press: 16 June 2006
In 1989 Happel asked the question whether, for a finite-dimensional algebra $A$ over an algebraically closed field $k,\ \text{\rm gl.dim\,} A< \infty$ if and only if $\text{\rm hch.dim\,} A < \infty$. Here, the Hochschild cohomology dimension of $A$ is given by $\text{\rm hch.dim\,} A := \inf \{ n \in \mathbb{N}_0 \mid \dim \textit{HH}^i(A)=0 \text{ for }i > n \}$. Recently Buchweitz, Green, Madsen and Solberg gave a negative answer to Happel's question. They found a family of pathological algebras $A_q$ for which $\text{\rm gl.dim\,} A_q = \infty$ but $\text{\rm hch.dim\,} A_q=2$. These algebras are pathological in many aspects. However, their Hochschild homology behaviors are not pathological any more; indeed one has $\text{\rm hh.dim\,} A_q = \infty=\text{\rm gl.dim\,} A_q$. Here, the Hochschild homology dimension of $A$ is given by $\text{\rm hh.dim\,} A := \inf \{ n \in \mathbb{N}_0 \mid \dim \textit{HH}_i(A)=0 \text{ for } i > n\}$. This suggests posing a seemingly more reasonable conjecture by replacing the Hochschild cohomology dimension in Happel's question with the Hochschild homology dimension: $\text{\rm gl.dim\,} A < \infty$ if and only if $\text{\rm hh.dim\,} A < \infty$ if and only if $\text{\rm hh.dim\,} A = 0$. The conjecture holds for commutative algebras and monomial algebras. In the case where $A$ is a truncated quiver algebra, these conditions are equivalent to the condition that the quiver of $A$ has no oriented cycles. Moreover, an algorithm for computing the Hochschild homology of any monomial algebra is provided. Thus the cyclic homology of any monomial algebra can be read off when the underlying field is characteristic 0.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.