Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:28:29.679Z Has data issue: false hasContentIssue false

Specific Measures of Executive Function Predict Cognitive Decline in Older Adults

Published online by Cambridge University Press:  24 November 2011

Lindsay R. Clark
Affiliation:
San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
Dawn M. Schiehser
Affiliation:
Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California Department of Veterans Affairs San Diego Healthcare System, San Diego, California
Gali H. Weissberger
Affiliation:
San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
David P. Salmon
Affiliation:
Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California
Dean C. Delis
Affiliation:
Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California Department of Veterans Affairs San Diego Healthcare System, San Diego, California
Mark W. Bondi*
Affiliation:
Department of Psychiatry, University of California San Diego, School of Medicine, La Jolla, California Department of Veterans Affairs San Diego Healthcare System, San Diego, California
*
Correspondence and reprint requests to: Mark W. Bondi, ABPP/CN, VA San Diego Healthcare System (116B), 3350 La Jolla Village Drive, San Diego, CA 92161. E-mail: mbondi@ucsd.edu

Abstract

Decline in executive function has been noted in the prodromal stage of Alzheimer's disease (AD) and may presage more global cognitive declines. In this prospective longitudinal study, five measures of executive function were used to predict subsequent global cognitive decline in initially nondemented older adults. Of 71 participants, 15 demonstrated significant decline over a 1-year period on the Dementia Rating Scale (Mattis, 1988) and the remaining participants remained stable. In the year before decline, the decline group performed significantly worse than the no-decline group on two measures of executive function: the Color-Word Interference Test (CWIT; inhibition/switching condition) and Verbal Fluency (VF; switching condition). In contrast, decliners and non-decliners performed similarly on measures of spatial fluency (Design Fluency switching condition), spatial planning (Tower Test), and number-letter switching (Trail Making Test switching condition). Furthermore, the CWIT inhibition-switching measure significantly improved the prediction of decline and no-decline group classification beyond that of learning and memory measures. These findings suggest that some executive function measures requiring inhibition and switching provide predictive utility of subsequent global cognitive decline independent of episodic memory and may further facilitate early detection of dementia. (JINS, 2012, 18, 118–127)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M.S., Moss, M.B., Tanzi, R., Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7(5), 631639.CrossRefGoogle ScholarPubMed
Backman, L., Jones, S., Berger, A.K., Laukka, E.J., Small, B.J. (2005). Cognitive impairment in preclinical Alzheimer's disease: A meta-analysis. Neuropsychology, 19(4), 520531.CrossRefGoogle ScholarPubMed
Baudic, S., Dalla Barba, G., Thibaudet, M.C., Smagghe, A., Remy, P., Traykov, L. (2006). Executive function deficits in early Alzheimer's disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21(1), 1521.CrossRefGoogle ScholarPubMed
Bickel, H., Mosch, E., Seigerschmidt, E., Siemen, M., Forstl, H. (2006). Prevalence and persistence of mild cognitive impairment among elderly patients in general hospitals. Dementia and Geriatric Cognitive Disorders, 21(4), 242250.CrossRefGoogle ScholarPubMed
Bisiacchi, P.S., Borella, E., Bergamaschi, S., Carretti, B., Mondini, S. (2008). Interplay between memory and executive functions in normal and pathological aging. Journal of Clinical and Experimental Neuropsychology, 30(6), 723733.CrossRefGoogle ScholarPubMed
Blacker, D., Lee, H., Muzikansky, A., Martin, E.C., Tanzi, R., McArdle, J.J., Albert, M. (2007). Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Archives of Neurology, 64(6), 862871.CrossRefGoogle ScholarPubMed
Bondi, M.W., Houston, W.S., Eyler, L.T., Brown, G.G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer's disease. Neurology, 64, 501508.CrossRefGoogle Scholar
Bondi, M.W., Jak, A.J., Delano-Wood, L., Jacobson, M.W., Delis, D.C., Salmon, D.P. (2008). Neuropsychological contributions to the early identification of Alzheimer's disease. Neuropsychology Review, 18, 7390.CrossRefGoogle Scholar
Bondi, M.W., Salmon, D.P., Galasko, D., Thomas, R.G., Thal, L.J. (1999). Neuropsychological function and Apolipoprotein E genotype in the preclinical detection of Alzheimer's disease. Psychology and Aging, 14, 295303.CrossRefGoogle ScholarPubMed
Bondi, M.W., Salmon, D.P., Monsch, A.U., Galasko, D., Butters, N., Klauber, M.R., Saitoh, T. (1995). Episodic memory changes are associated with the APOE-epsilon 4 allele in nondemented older adults. Neurology, 45, 22032206.CrossRefGoogle ScholarPubMed
Bookheimer, S.Y., Strojwas, M.H., Cohen, M.S., Saunders, A.M., Pericak-Vance, M.A., Mazziotta, J.C., Small, G.W. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. New England Journal of Medicine, 343, 450456.CrossRefGoogle ScholarPubMed
Brandt, J., Aretouli, E., Neijstrom, E., Samek, J., Manning, K., Albert, M.S., Bandeen-Roche, K. (2009). Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology, 23(5), 607618.CrossRefGoogle ScholarPubMed
Chang, Y.L., Bondi, M.W., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Jacobson, M.W., Dale, A.M. (2010). Brain substrates of learning and retention in mild cognitive impairment diagnosis and progression to Alzheimer's disease. Neuropsychologia, 48, 12371247.CrossRefGoogle ScholarPubMed
Chang, Y.L., Jacobson, M.W., Fennema-Notestine, C., Hagler, D.J., Jennings, R.G., Dale, A.M., McEvoy, L.K. (2010). Level of executive function influences verbal memory in amnestic mild cognitive impairment and predicts prefrontal and posterior cingulate thickness. Cerebral Cortex, 20(6), 13051313.CrossRefGoogle ScholarPubMed
Chapman, R.M., Mapstone, M., Porsteinsson, A.P., Gardner, M.N., McCrary, J.W., DeGrush, E., Guillily, M.D. (2010). Diagnosis of Alzheimer's disease using neuropsychological testing improved by multivariate analyses. Journal of Clinical and Experimental Neuropsychology, 32(8), 793808.CrossRefGoogle ScholarPubMed
Chen, P.J., Ratcliff, G., Belle, S.H., Cauley, J.A., DeKosky, S.T., Ganguli, M. (2001). Patterns of cognitive decline in presymptomatic Alzheimer disease: A prospective community study. Archives of General Psychiatry, 58(9), 853858.CrossRefGoogle ScholarPubMed
Delano-Wood, L., Bondi, M.W., Sacco, J., Abeles, N., Jak, A.J., Libon, D.J., Bozoki, A. (2009). Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15, 906914.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., Kramer, J.H. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. (1987). The California Verbal Learning Test. San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. (2000). California Verbal Learning Test: Second Edition. San Antonio, TX: Psychological Corporation.Google Scholar
Dickerson, B.C., Sperling, R.A., Hyman, B.T., Albert, M.S., Blacker, D. (2007). Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment. Archives of General Psychiatry, 64(12), 14431450.CrossRefGoogle ScholarPubMed
Eppig, J., Wambach, D.M., Nieves, C., Price, C.C., Lamar, M., Delano-Wood, L., Libon, D.J. (in press). Dysexecutive functioning in mild cognitive impairment: Derailment in temporal gradients. Journal of the International Neuropsychological Society.Google Scholar
Fine, E.M., Delis, D.C., Wetter, S.R., Jacobson, M.W., Jak, A.J., McDonald, C.R., Bondi, M.W. (2008). Cognitive discrepancies versus APOE genotype as predictors of cognitive decline in normal-functioning elderly individuals: A longitudinal study. American Journal of Geriatric Psychiatry, 16(5), 366374.CrossRefGoogle ScholarPubMed
Ganguli, M., Dodge, H.H., Shen, C.Y., DeKosky, S.T. (2004). Mild cognitive impairment, amnestic type: An epidemiologic study. Neurology, 63(1), 115121.CrossRefGoogle ScholarPubMed
Ganguli, M., Snitz, B.E., Saxton, J.A., Chang, C.-C.H., Lee, C.-W., Vander Bilt, J., Petersen, R.C. (2011). Outcomes of mild cognitive impairment by definition: A population study. Archives of Neurology, 68, 761767.CrossRefGoogle ScholarPubMed
Han, S.D., Houston, W.S., Jak, A.J., Eyler, L.T., Nagel, B.J., Fleisher, A.S., Bondi, M.W. (2007). Verbal paired-associate learning by APOE genotype in nondemented adults: fMRI evidence of a right hemispheric compensatory response. Neurobiology of Aging, 28, 238247.CrossRefGoogle ScholarPubMed
Hutchison, K.A., Balota, D.A., Ducheck, J.M. (2010). The utility of Stroop task switching as a marker for early stage Alzheimer's disease. Psychology and Aging, 25(3), 545559.CrossRefGoogle ScholarPubMed
Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., Delis, D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17(5), 368375.CrossRefGoogle ScholarPubMed
Lafleche, G., Albert, M.S. (1995). Executive function deficits in mild Alzheimer's disease. Neuropsychology, 9(3), 313320.CrossRefGoogle Scholar
Lange, K.L., Bondi, M.W., Galasko, D.G., Delis, D.C., Salmon, D.P., Thal, L.J. (2002). Decline in verbal memory during preclinical Alzheimer's disease: Examination of the effect of Apolipoprotein E genotype. Journal of the International Neuropsychological Society, 8, 943955.CrossRefGoogle Scholar
Libon, D.J., Xie, S.X., Eppig, J., Wicas, G., Lamar, M., Lippa, C., Wambach, D.M. (2010). The heterogeneity of mild cognitive impairment: A neuropsychological analysis. Journal of the International Neuropsychological Society, 16, 8493.CrossRefGoogle ScholarPubMed
Logie, R.H., Cocchini, G., Della Sala, S., Baddeley, A.D. (2004). Is there a specific executive capacity for dual task coordination? Evidence from Alzheimer's disease. Neuropsychology, 18(3), 504513.CrossRefGoogle Scholar
Mattis, S. (1988). Dementia rating scale: Professional manual. Odessa, FL: Psychological Assessment Resources Inc.Google Scholar
Mitchell, J., Arnold, R., Dawson, K., Nestor, P.J., Hodges, J.R. (2009). Outcome in subgroups of mild cognitive impairment (MCI) is highly predictable using a simple algorithm. Journal of Neurology, 256(9), 15001509.CrossRefGoogle ScholarPubMed
Monsch, A.U., Bondi, M.W., Salmon, D.P., Butters, N., Thal, L.J., Hansen, L.A., Klauber, M.R. (1995). Clinical validity of the Mattis Dementia Rating Scale in detecting dementia of the Alzheimer type: A double cross-validation and application to a community-dwelling sample. Archives of Neurology, 52, 899904.CrossRefGoogle ScholarPubMed
Nutter-Upham, K.E., Saykin, A.J., Rabin, L.A., Roth, R.M., Wishart, H.A., Pare, N., Flashman, L.A. (2008). Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Archives of Clinical Neuropsychology, 23(3), 229241.CrossRefGoogle ScholarPubMed
Pedraza, O., Smith, G.E., Ivnik, R.J., Willis, F.B., Ferman, T.J., Petersen, R.C., Lucas, J.A. (2007). Reliable change on the Dementia Rating Scale. Journal of the International Neuropsychological Society, 13(4), 716720.CrossRefGoogle ScholarPubMed
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 19851992.CrossRefGoogle ScholarPubMed
Petersen, R.C., Roberts, R.O., Knopman, D.S., Boeve, B.F., Geda, Y.E., Ivnik, R.J., Jack, C.R. (2009). Mild cognitive impairment: Ten years later. Archives of Neurology, 66, 14471455.CrossRefGoogle ScholarPubMed
Raoux, N., Amieva, H., Le Goff, M., Auriacombe, S., Letenneur, L., Dartigues, J.-F. (2008). Clustering and switching processes in semantic verbal fluency in the course of Alzheimer's disease subjects: Results from the PAQUID longitudinal study. Cortex, 44, 11881196.CrossRefGoogle ScholarPubMed
Rozzini, L., Chilovi, B.V., Conti, M., Bertoletti, E., Delrio, I., Trabucchi, M., Padovani, A. (2007). Conversion of amnestic mild cognitive impairment to Dementia of Alzheimer type is independent to memory deterioration. International Journal of Geriatric Psychiatry, 22(12), 12171222.CrossRefGoogle ScholarPubMed
Salmon, D.P., Bondi, M.W. (2009). Neuropsychological assessment of dementia. Annual Review of Psychology, 60, 257282.CrossRefGoogle ScholarPubMed
Salmon, D.P., Thomas, R.G., Pay, M.M., Booth, A., Hofstetter, C.R., Thal, L.J., Katzman, R. (2002). Alzheimer's disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59(7), 10221028.CrossRefGoogle ScholarPubMed
Schmitter-Edgecombe, M., Sanders, C. (2009). Task switching in mild cognitive impairment: Switch and nonswitch costs. Journal of the International Neuropsychological Society, 15(1), 103111.CrossRefGoogle ScholarPubMed
Sinai, M., Phillips, N.A., Chertkow, H., Kabani, N.J. (2010). Task switching performance reveals heterogeneity amongst patients with mild cognitive impairment. Neuropsychology, 24(6), 757774.CrossRefGoogle ScholarPubMed
Stokholm, J., Vogel, A., Gade, A., Waldemar, G. (2006). Heterogeneity in executive impairment in patients with very mild Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 22(1), 5459.CrossRefGoogle ScholarPubMed
Tabert, M.H., Manly, J.J., Liu, X.H., Pelton, G.H., Rosenblum, S., Jacobs, M., Devanand, D.P. (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Archives of General Psychiatry, 63(8), 916924.CrossRefGoogle ScholarPubMed
Traykov, L., Raoux, N., Latour, F., Gallo, L., Hanon, O., Baudic, S., Rigaud, A.S. (2007). Executive functions deficit in mild cognitive impairment. Cognitive and Behavioral Neurology, 20(4), 219224.CrossRefGoogle ScholarPubMed
Twamley, E.W., Ropacki, S.A., Bondi, M.W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer's disease. Journal of the International Neuropsychological Society, 12(5), 707735.CrossRefGoogle ScholarPubMed