Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:21:42.078Z Has data issue: false hasContentIssue false

Residual Effects of Cannabis Use on Effort-Based Decision-Making

Published online by Cambridge University Press:  15 July 2021

Mackenzie B. Taylor
Affiliation:
Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, USA
Francesca M. Filbey*
Affiliation:
Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, USA
*
Correspondence and reprint requests to: Francesca M. Filbey, PhD, Center for Brain Health, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2200 West Mockingbird, Dallas, TX75235, USA. Email: Francesca.Filbey@utdallas.edu

Abstract

Objective:

Acute Δ9-tetrahydrocannabinol (THC) administration in humans (Lawn etal., 2016) and rats (Silveira, Adams, Morena, Hill, & Winstanley, 2016) has been associated with decreased effort allocation that may explain amotivation during acute cannabis intoxication. To date, however, whether residual effects of cannabis use on effort-based decision-making are present and observable in humans have not yet been determined. The goal of this study was to test whether prolonged cannabis use has residual effects on effort-based decision-making in 24-hr abstinent cannabis using adults.

Method:

We evaluated performance on the Effort Expenditure for Reward Task (EEfRT) in 41 adult cannabis users (mean age = 24.63 years, 21 males) and 45 nonusers (mean age = 23.90 years, 19 males). A mixed 2x3x3 ANOVA with age as a covariate was performed to examine the effect of group, probability of winning, and reward amount on EEfRT performance. EEfRT performance was operationalized as % of trials for which the hard (vs. easy) condition was chosen. Pearson’s correlations were conducted to test the relationship between EEfRT performance and measures of cannabis use, anhedonia and motivation.

Results:

We found that cannabis users selected hard trials significantly more than nonusers regardless of win probability or reward level. Frequency of cannabis use was positively correlated with amount of % hard trials chosen. There were no significant correlations between % hard trials chosen, self-reported anhedonia, or motivation.

Conclusions:

These results suggest that unlike acute effects, residual effects of cannabis following 24 hrs of abstinence are associated with greater effort allocation during effort-based decision-making.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, A.J., Gerst, K., & Finn, P.R. (2020). Intelligence moderates the relationship between delay discounting rate and problematic alcohol use. Psychology of Addictive Behaviors, 34(1), 175181. https://doi.org/10.1037/adb0000471 CrossRefGoogle ScholarPubMed
Barch, D.M., Pagliaccio, D., & Luking, K.R. (2018). Motivational Impairments in psychotic and depressive pathology: Psychological and neural mechanisms. Neurobiology of Abnormal Emotion and Motivated Behaviors, 123, 278304.CrossRefGoogle Scholar
Barch, D.M., Treadway, M.T., & Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment. Journal of Abnormal Psychology, 123(2), 387397. https://doi.org/10.1037/a0036299 CrossRefGoogle ScholarPubMed
Beck, A.T., Epstein, N., Brown, G., & Steer, R.A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893897. https://doi.org/10.1037//0022-006x.56.6.893 CrossRefGoogle ScholarPubMed
Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561571. https://doi.org/10.1001/archpsyc.1961.01710120031004 CrossRefGoogle ScholarPubMed
Behan, B., Connolly, C.G., Datwani, S., Doucet, M., Ivanovic, J., Morioka, R., … Garavan, H. (2014). Response inhibition and elevated parietal-cerebellar correlations in chronic adolescent cannabis users. Neuropharmacology, 84, 131137. https://doi.org/10.1016/j.neuropharm.2013.05.027 CrossRefGoogle ScholarPubMed
Berridge, K.C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 11241143. https://doi.org/10.1111/j.1460-9568.2012.07990.x CrossRefGoogle ScholarPubMed
Białaszek, W., Marcowski, P., & Ostaszewski, P. (2017). Physical and cognitive effort discounting across different reward magnitudes: Tests of discounting models. PLoS One, 12(7), e0182353. https://doi.org/10.1371/journal.pone.0182353 CrossRefGoogle ScholarPubMed
Bloomfield, M.A., Ashok, A.H., Volkow, N.D., & Howes, O.D. (2016). The effects of Delta(9)-tetrahydrocannabinol on the dopamine system. Nature, 539(7629), 369377. doi: 10.1038/nature20153 CrossRefGoogle ScholarPubMed
Bond, A., & Lader, M. (1974). The use of analogue scales in rating subjective feelings. British Journal of Medical Psychology, 47(3), 211218. https://doi.org/10.1111/j.2044-8341.1974.tb02285.x CrossRefGoogle Scholar
Byrne, K.A., & Ghaiumy Anaraky, R. (2019). Strive to win or not to lose? Age-related differences in framing effects on effort-based decision-making. The Journals of Gerontology: Series B. 75(10), 20952105. https://doi.org/10.1093/geronb/gbz136 CrossRefGoogle Scholar
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67(2), 319333.CrossRefGoogle Scholar
Casey, J.L., & Cservenka, A. (2020). Effects of frequent marijuana use on risky decision-making in young adult college students. Addictive Behaviors Reports, 100253. https://doi.org/10.1016/j.abrep.2020.100253 CrossRefGoogle ScholarPubMed
Chang, W.C., Chu, A.O.K., Treadway, M.T., Strauss, G.P., Chan, S.K.W., Lee, E.H.M., … Chen, E.Y.H. (2019). Effort-based decision-making impairment in patients with clinically-stabilized first-episode psychosis and its relationship with amotivation and psychosocial functioning. European Neuropsychopharmacology, 29(5), 629642. https://doi.org/10.1016/j.euroneuro.2019.03.006 CrossRefGoogle ScholarPubMed
Clithero, J.A. (2011). Neuroeconomics of Reward Information and Motivation (Ph.D., Duke University). Duke University, United States -- North Carolina. Retrieved from https://search.proquest.com/docview/874146592/abstract/66A6B01DD2684A3EPQ/1 Google Scholar
Cohen, J. (1957). A factor-analytically based rationale for the Wechsler Adult Intelligence Scale. Journal of Consulting Psychology, 21(6), 451457. https://doi.org/10.1037/h0044203 CrossRefGoogle ScholarPubMed
Cousijn, J., Wiers, R.W., Ridderinkhof, K.R., Brink, W.vanden, Veltman, D.J., Porrino, L.J., & Goudriaan, A.E. (2012). Individual differences in decision making and reward processing predict changes in cannabis use: A prospective functional magnetic resonance imaging study. Addiction Biology, 18(6), 10131023. https://doi.org/10.1111/j.1369-1600.2012.00498.x CrossRefGoogle ScholarPubMed
Cousijn, J., Wiers, R.W., Ridderinkhof, K.R., van den Brink, W., Veltman, D.J., & Goudriaan, A.E. (2014). Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective fMRI study. Human Brain Mapping, 35(5), 24702482. https://doi.org/10.1002/hbm.22342 CrossRefGoogle ScholarPubMed
Culbreth, A.J., Moran, E.K., & Barch, D.M. (2018). Effort-cost decision-making in psychosis and depression: Could a similar behavioral deficit arise from disparate psychological and neural mechanisms? Psychological Medicine, 48(6), 889904. https://doi.org/10.1017/S0033291717002525 CrossRefGoogle ScholarPubMed
Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-Determination in personality. Journal of Research in Personality, 19,109134.CrossRefGoogle Scholar
Fatahi, Z., Zeinaddini-Meymand, A., Karimi-Haghighi, S., Moradi, M., Khodagholi, F., & Haghparast, A. (2020). Naloxone-precipitated withdrawal ameliorates impairment of cost-benefit decision making in morphine-treated rats: Involvement of BDNF, p-GSK3-β, and p-CREB in the amygdala. Neurobiology of Learning and Memory, 167, 107138. https://doi.org/10.1016/j.nlm.2019.107138 CrossRefGoogle ScholarPubMed
Fatima, H., Howlett, A.C., & Whitlow, C.T. (2019). Reward, Control & Decision-Making in Cannabis Use Disorder: Insights from Functional MRI. The British Journal of Radiology, 92(1101), 20190165. https://doi.org/10.1259/bjr.20190165 CrossRefGoogle ScholarPubMed
Figueiredo, P.R., Tolomeo, S., Steele, J.D., & Baldacchino, A. (2020). Neurocognitive consequences of chronic cannabis use: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 108, 358369. https://doi.org/10.1016/j.neubiorev.2019.10.014 CrossRefGoogle ScholarPubMed
Filbey, F.M., Dunlop, J., Ketcherside, A., Baine, J., Rhinehardt, T., Kuhn, B., … Alvi, T. (2016). FMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users. Human Brain Mapping, 37(10), 34313443. https://doi.org/10.1002/hbm.23250 CrossRefGoogle Scholar
Fridberg, D.J., Queller, S., Ahn, W.-Y., Kim, W., Bishara, A.J., Busemeyer, J.R., … Stout, J.C. (2010). Cognitive mechanisms underlying risky decision-making in chronic cannabis users. Journal of Mathematical Psychology, 54(1), 2838. https://doi.org/10.1016/j.jmp.2009.10.002 CrossRefGoogle ScholarPubMed
Gonzalez, R. (2007). Acute and non-acute effects of cannabis on brain functioning and neuropsychological performance. Neuropsychology Review, 17(3), 347361. https://doi.org/10.1007/s11065-007-9036-8 CrossRefGoogle ScholarPubMed
Grant, I., Gonzalez, R., Carey, C.L., Natarajan, L., & Wolfson, T. (2003). Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. Journal of the International Neuropsychological Society, 9(5), 679689. https://doi.org/10.1017/S1355617703950016 CrossRefGoogle ScholarPubMed
Green, L., & Myerson, J. (2013). How many impulsivities? A discounting perspective. Journal of the Experimental Analysis of Behavior, 99(1), 313. https://doi.org/10.1002/jeab.1 CrossRefGoogle ScholarPubMed
Grodin, E.N., Steckler, L.E., & Momenan, R. (2016). Altered striatal response during effort-based valuation and motivation in alcohol-dependent individuals. Alcohol and Alcoholism, 51(6), 638646. https://doi.org/10.1093/alcalc/agw003 CrossRefGoogle ScholarPubMed
Hammond, C.J., Chaney, A., Hendrickson, B., & Sharma, P. (2020). Cannabis use among U.S. adolescents in the era of marijuana legalization: A review of changing use patterns, comorbidity, and health correlates. International Review of Psychiatry, 32(3), 221234. https://doi.org/10.1080/09540261.2020.1713056 CrossRefGoogle ScholarPubMed
Hayley, A.C., Stough, C., & Downey, L.A. (2017). DSM-5 cannabis use disorder, substance use and DSM-5 specific substance-use disorders: Evaluating comorbidity in a population-based sample. European Neuropsychopharmacology, 27(8), 732743. https://doi.org/10.1016/j.euroneuro.2017.06.004 CrossRefGoogle Scholar
Imhoff, S., Harris, M., Weiser, J., & Reynolds, B. (2014). Delay discounting by depressed and non-depressed adolescent smokers and non-smokers. Drug and Alcohol Dependence, 135, 152155. https://doi.org/10.1016/j.drugalcdep.2013.11.014 CrossRefGoogle ScholarPubMed
Johnson, S.L., Swerdlow, B.A., Treadway, M., Tharp, J.A., & Carver, C.S. (2017). Willingness to expend effort toward reward and extreme ambitions in Bipolar I disorder. Clinical Psychological Science, 5(6), 943951. https://doi.org/10.1177/2167702617718181 CrossRefGoogle Scholar
Lawn, W., Freeman, T.P., Pope, R.A., Joye, A., Harvey, L., Hindocha, C., … Curran, H.V. (2016). Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: An evaluation of the cannabis ‘amotivational’ hypotheses. Psychopharmacology, 233(19), 35373552. https://doi.org/10.1007/s00213-016-4383-x CrossRefGoogle ScholarPubMed
Lee, J.Y., Brook, J.S., & Kim, W. (2018). Triple trajectories of alcohol use, tobacco use, and depressive symptoms as predictors of cannabis use disorders among urban adults. Psychology of Addictive Behaviors: Journal of the Society of Psychologists in Addictive Behaviors, 32(4), 466474. https://doi.org/10.1037/adb0000373 CrossRefGoogle ScholarPubMed
Massar, S.A.A., Csathó, Á., & Van der Linden, D. (2018). Quantifying the motivational effects of cognitive fatigue through effort-based decision making. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.00843 CrossRefGoogle ScholarPubMed
Massar, S.A.A., Libedinsky, C., Weiyan, C., Huettel, S.A., & Chee, M.W.L. (2015). Separate and overlapping brain areas encode subjective value during delay and effort discounting. NeuroImage, 120, 104113. https://doi.org/10.1016/j.neuroimage.2015.06.080 CrossRefGoogle ScholarPubMed
McCarthy, J.M., Treadway, M.T., & Blanchard, J.J. (2015). Motivation and effort in individuals with social anhedonia. Schizophrenia Research, 165(1), 7075. https://doi.org/10.1016/j.schres.2015.03.030 CrossRefGoogle ScholarPubMed
Meier, M.H., & White, M. (2018). Do young-adult cannabis users show amotivation? An analysis of informant reports. Translational Issues in Psychological Science, 4(1), 99107. https://doi.org/10.1037/tps0000150 CrossRefGoogle Scholar
Mosner, M.G., Kinard, J.L., McWeeny, S., Shah, J.S., Markiewitz, N.D., Damiano-Goodwin, C.R., … Dichter, G.S. (2017). Vicarious effort-based decision-making in autism spectrum disorders. Journal of Autism and Developmental Disorders, 47(10), 29923006. https://doi.org/10.1007/s10803-017-3220-3 CrossRefGoogle ScholarPubMed
Oleson, E.B., & Cheer, J.F. (2012). A brain on cannabinoids: The role of dopamine release in reward seeking. Cold Spring Harbor Perspectives in Medicine, 2(8). https://doi.org/10.1101/cshperspect.a012229 CrossRefGoogle ScholarPubMed
Oudeyer, P.-Y., & Kaplan, F. (2009). What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1. https://doi.org/10.3389/neuro.12.006.2007 Google Scholar
Pacheco-Colón, I., Coxe, S., Musser, E.D., Duperrouzel, J.C., Ross, J.M., & Gonzalez, R. (2018). Is cannabis use associated with various indices of motivation among adolescents? Substance Use & Misuse, 53(7), 11581169. https://doi.org/10.1080/10826084.2017.1400566 CrossRefGoogle ScholarPubMed
Pacheco-Colón, I., Ramirez, A.R., & Gonzalez, R. (2019). Effects of adolescent cannabis use on motivation and depression: A systematic review. Current Addiction Reports, 6(4), 532546. https://doi.org/10.1007/s40429-019-00274-y CrossRefGoogle ScholarPubMed
Pulcu, E., Trotter, P.D., Thomas, E.J., McFarquhar, M., Juhasz, G., Sahakian, B.J., … Elliott, R. (2014). Temporal discounting in major depressive disorder. Psychological Medicine, 44(9), 18251834. https://doi.org/10.1017/S0033291713002584 CrossRefGoogle ScholarPubMed
Reddy, L.F., Horan, W.P., Barch, D.M., Buchanan, R.W., Dunayevich, E., Gold, J.M., … Green, M.F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 1—Psychometric characteristics of 5 paradigms. Schizophrenia Bulletin, 41(5), 10451054. https://doi.org/10.1093/schbul/sbv089 CrossRefGoogle ScholarPubMed
Robinson, S.M., Sobell, L.C., Sobell, M.B., & Leo, G.I. (2014). Reliability of the timeline followback for cocaine, cannabis, and cigarette use. Psychology of Addictive Behaviors, 28(1), 154162. https://doi.org/10.1037/a0030992 CrossRefGoogle ScholarPubMed
Schmidt, L., Lebreton, M., Cléry-Melin, M.-L., Daunizeau, J., & Pessiglione, M. (2012). Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biology, 10(2). https://doi.org/10.1371/journal.pbio.1001266 CrossRefGoogle ScholarPubMed
Shamosh, N.A., & Gray, J.R. (2008). Delay discounting and intelligence: A meta-analysis. Intelligence, 36(4), 289305. https://doi.org/10.1016/j.intell.2007.09.004 CrossRefGoogle Scholar
Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G.C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 2233;quiz 34–57.Google ScholarPubMed
Silveira, M.M., Adams, W.K., Morena, M., Hill, M.N., & Winstanley, C.A. (2016). Δ9-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats. Journal of Psychiatry & Neuroscience: JPN, 41(6), 150363.Google ScholarPubMed
Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P. (1995). A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. The British Journal of Psychiatry: The Journal of Mental Science, 167(1), 99103. https://doi.org/10.1192/bjp.167.1.99 CrossRefGoogle ScholarPubMed
Solowij, N., Stephens, R.S., Roffman, R.A., Babor, T., Kadden, R., Miller, M., … Vendetti, J. (2002). Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA, 287(9), 11231131. https://doi.org/10.1001/jama.287.9.1123 CrossRefGoogle ScholarPubMed
Treadway, M.T., Bossaller, N., Shelton, R.C., & Zald, D.H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553558. https://doi.org/10.1037/a0028813 CrossRefGoogle ScholarPubMed
Treadway, M.T., Buckholtz, J.W., Schwartzman, A.N., Lambert, W.E., & Zald, D.H. (2009). Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS ONE, 4(8), e6598. https://doi.org/10.1371/journal.pone.0006598 CrossRefGoogle ScholarPubMed
Treadway, M.T., Peterman, J.S., Zald, D.H., & Park, S. (2015). Impaired effort allocation in patients with schizophrenia. Schizophrenia Research, 161(2), 382385. https://doi.org/10.1016/j.schres.2014.11.024 CrossRefGoogle ScholarPubMed
Vaidya, J.G., Block, R.I., O’Leary, D.S., Ponto, L.B., Ghoneim, M.M., & Bechara, A. (2012). Effects of chronic marijuana use on brain activity during monetary decision-making. Neuropsychopharmacology, 37(3), 618629. https://doi.org/10.1038/npp.2011.227 CrossRefGoogle ScholarPubMed
van Leeuwen, A.P., Creemers, H.E., Verhulst, F.C., Ormel, J., & Huizink, A.C. (2011). Are adolescents gambling with cannabis use? A longitudinal study of impulsivity measures and adolescent substance use: The TRAILS study. Journal of Studies on Alcohol and Drugs, 72(1), 7078. https://doi.org/10.15288/jsad.2011.72.70 CrossRefGoogle Scholar
Vingerhoets, W., Koenders, L., van den Brink, W., Wiers, R., Goudriaan, A., van Amelsvoort, T., … Cousijn, J. (2016). Cue-induced striatal activity in frequent cannabis users independently predicts cannabis problem severity three years later. Journal of Psychopharmacology, 30(2), 152158. https://doi.org/10.1177/0269881115620436 CrossRefGoogle ScholarPubMed
Vlachou, S., & Panagis, G. (2014). Regulation of brain reward by the endocannabinoid system: A critical review of behavioral studies in animals. Current Pharmaceutical Design, 20(13), 20722088. https://doi.org/10.2174/13816128113199990433 CrossRefGoogle ScholarPubMed
Wrege, J., Schmidt, A., Walter, A., Smieskova, R., Bendfeldt, K., Radue, E.-W., … Borgwardt, S. (2014). Effects of cannabis on impulsivity: A systematic review of neuroimaging findings. Current Pharmaceutical Design, 20(13), 21262137.CrossRefGoogle ScholarPubMed
Zilverstand, A., Huang, A.S., Alia-Klein, N., & Goldstein, R.Z. (2018). Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 98(5), 886903. https://doi.org/10.1016/j.neuron.2018.03.048 CrossRefGoogle ScholarPubMed
Supplementary material: File

Taylor and Filbey supplementary material

Taylor and Filbey supplementary material

Download Taylor and  Filbey supplementary material(File)
File 18.9 KB