Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:07:08.081Z Has data issue: false hasContentIssue false

Noradrenergic Moderation of Working Memory Impairments in Adults with Autism Spectrum Disorder

Published online by Cambridge University Press:  14 March 2012

Kimberly E. Bodner
Affiliation:
Department of Psychological Sciences, University of Missouri, Columbia, Missouri
David Q. Beversdorf
Affiliation:
Department of Psychological Sciences, University of Missouri, Columbia, Missouri Department of Radiology and Neurology, University of Missouri, Columbia, Missouri
Sanjida S. Saklayen
Affiliation:
College of Medicine, Ohio State University, Columbus, Ohio
Shawn E. Christ*
Affiliation:
Department of Psychological Sciences, University of Missouri, Columbia, Missouri
*
Correspondence and reprint requests to: Shawn E. Christ, Department of Psychological Sciences, 210 McAlester Hall, University of Missouri, Columbia, MO 65203. E-mail: christse@missouri.edu

Abstract

In addition to having difficulties with social communications, individuals with an autism spectrum disorder (ASD) often also experience impairment in higher-order, executive skills. The present study examined the effects of pharmacological modulation of the norepinephrine system on the severity of such impairments. A sample of 14 high-functioning adults with ASD and a demographically-matched comparison group of 13 typically developing individuals participated. An AX continuous performance test (AX-CPT) was used to evaluate working memory and inhibitory control. AX-CPT performance was assessed following administration of a single dose of propranolol (a beta adrenergic antagonist) and following placebo (sugar pill) administration. Individuals with ASD performed more poorly than non-ASD individuals in the working memory condition (BX trials). Importantly, administration of propranolol attenuated this impairment, with the ASD group performing significantly better in the propranolol condition than the placebo condition. Working memory performance of the non-ASD group was unaffected by propranolol/placebo administration. No group or medication effects were observed for the inhibition condition (AY trials). The present findings suggest that norepinephrine may play a role in some, but not necessarily all, cognitive impairments associated with ASD. Additional research is needed to fully understand whether this role is primarily causal or compensatory in nature. (JINS, 2012, 18, 556–564)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adleman, N., Menon, V., Blasey, C., White, C., Warsofsky, I., Glover, G., Reiss, A. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage, 16, 6175. doi:10.1006/nimg.2001.1046CrossRefGoogle ScholarPubMed
Alexander, J.K., Hillier, A., Smith, R.M., Tivarus, M.E., Beversdorf, D.Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19, 468478. doi:10.1162/jocn.2007.19.3.468CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (Fourth Edition-Revised). Washington, DC: APA.Google Scholar
Arnsten, A.F. (1998). Catecholamine modulation of prefrontal cortical cognitive function. Trends in Cognitive Sciences, 2, 436447. doi:10.1016/S1364-6613(98)01240-6CrossRefGoogle ScholarPubMed
Arnsten, A.F., Li, B.M. (2005). Neurobiology of executive functions: Catecholamine influences on prefrontal cortical functions. Biological Psychiatry, 57, 13771384. doi:10.1016/j.biopsych.2004.08.019CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46, 13091320. doi:10.1016/S0006-3223(99)00140-7CrossRefGoogle ScholarPubMed
Barch, D.M., Carter, C.S., MacDonald, A.W., Braver, T.S., Cohen, J.D. (2003). Context-processing deficits in schizophrenia: Diagnostic specificity, 4-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology, 112, 132143. doi:10.1037/0021-843X.112.1.132CrossRefGoogle ScholarPubMed
Barthelemy, C., Bruneau, N., Cottet-Eymard, J.M., Domenech-Jouve, J., Garreau, B., Lelord, G., Pyrin, L. (1988). Urinary free and conjugated catecholamines and metabolites in autistic children. Journal of Autism and Developmental Disorders, 18, 583591. doi:10.1007/BF02211876CrossRefGoogle ScholarPubMed
Berridge, C.W., Waterhouse, B.D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 3384. doi:10.1016 /S0165-0173(03)00143-7CrossRefGoogle ScholarPubMed
Beversdorf, D.Q., Carpenter, A.L., Miller, R.F., Cios, J.S., Hillier, A. (2008). Effect of propranolol on verbal problem solving in autism spectrum disorder. Neurocase, 14, 378. doi:10.1080/13554790802368661CrossRefGoogle ScholarPubMed
Buchsbaum, B., Greer, S., Chang, W., Berman, K. (2005). Meta-analysis of neuroimaging studies of the Wisconsin Card-Sorting Task and component processes. Human Brain Mapping, 25, 3545. doi:10.1002/hbm.20128CrossRefGoogle ScholarPubMed
Campbell, H.L., Tivarus, M.E., Hillier, A., Beversdorf, D.Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology Biochemistry and Behavior, 88, 222229. doi:10.1016/j.pbb.2007.08.003CrossRefGoogle ScholarPubMed
Christ, S.E., Holt, D.D., White, D.A., Green, L. (2007). Inhibitory control in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 37, 11551165. doi:10.1007/s10803-006-0259-yCrossRefGoogle ScholarPubMed
Christ, S.E., Kester, L.E., Bodner, K.E., Miles, J.H. (2011). Evidence for selective inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 25, 690701. doi:10.1037/a0024256CrossRefGoogle ScholarPubMed
Chugani, D., Muzik, O., Rothermel, R., Behen, M., Chakraborty, P., Mangner, T., Chugani, H.T. (1997). Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Annals of Neurology, 42, 666669. doi:10.1111/j.1460-9568.1997.tb01635.xCrossRefGoogle ScholarPubMed
Coull, J.T., Frith, C.D., Dolan, R.J., Frackowiak, R.S., Grasby, P.M. (1997). The neural correlates of the noradrenergic modulation of human attention, arousal and learning. European Journal of Neuroscience, 9, 589598. doi:10.1111/j.1460-9568.1997.tb01635.xCrossRefGoogle ScholarPubMed
Coull, J.T., Middleton, H.C., Robbins, T.W., Sahakian, B.J. (1995a). Clonidine and diazepam have differential effects on tests of attention and learning. Psychopharmacology, 120, 322332. doi:10.1007/BF02311180CrossRefGoogle ScholarPubMed
Coull, J.T., Middleton, H.C., Robbins, T.W., Sahakian, B.J. (1995b). Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology, 120, 311321. doi:10.1007/BF02311179CrossRefGoogle ScholarPubMed
Damasio, A.R., Maurer, R.G. (1978). A neurological model for childhood autism. Archives of Neurology, 35, 777786. doi:10.1001/archneur.1978.00500360001001CrossRefGoogle ScholarPubMed
Dhossche, D., Applegate, H., Abraham, A., Maertens, P., Bland, L., Bencsath, A., Martinez, J. (2002). Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: Stimulus for a GABA hypothesis of autism. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 8(8), PR1PR6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12165753Google ScholarPubMed
Fankhauser, M.P., Karumanchi, V.C., German, M.L., Yates, A., Karumanchi, S.D. (1992). A double-blind, placebo-controlled study of the efficacy of transdermal clonidine in autism. The Journal of Clinical Psychiatry, 53, 7782. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1548248Google ScholarPubMed
Hasselmo, M.E., Linster, C., Patil, M., Ma, D., Cekic, M. (1997). Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of Neurophysiology, 77, 33263339. Retrieved from http://jn.physiology.org/content/77/6/3326.shortCrossRefGoogle ScholarPubMed
Hill, E. (2004). Executive dysfunction in autism. Trends in Cognitive Science, 8, 2632. doi:10.1016/j.tics.2003.11.003CrossRefGoogle ScholarPubMed
Jäkälä, P., Riekkinen, M., Sirviö, J., Koivisto, E., Kejonen, K., Vanhanen, M., Riekkinen, P. (1999). Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology, 20, 460470. doi:10.1016/S0893-133X(98)00127-4CrossRefGoogle ScholarPubMed
Jaselskis, C.A., Jr.Cook, E.H., Fletcher, K.E., Leventhal, B.L. (1992). Clonidine treatment of hyperactive and impulsive children with autistic disorder. Journal of Clinical Psychopharmacology, 12, 322327. doi:10.1097/00004714-199210000-00005CrossRefGoogle ScholarPubMed
Joseph, R.M., McGrath, L.M., Tager-Flusberg, H. (2005). Executive dysfunction and its relation to language ability in verbal school-age children with autism. Developmental Neuropsychology, 27, 361378. doi:10.1207/s15326942dn2703_4CrossRefGoogle ScholarPubMed
Just, M.A., Cherkassky, V., Keller, T., Kana, R.K., Minshew, N.J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951961. doi:10.1093/cercor/bhl006CrossRefGoogle ScholarPubMed
Kelley, B.J., Yeager, K.R., Pepper, T.H., Beversdorf, D.Q. (2005). Cognitive impairment in acute cocaine withdrawal. Cognitive & Behavioral Neurology, 18, 108112. doi:10.1097/01.wnn.0000160823.61201.20CrossRefGoogle ScholarPubMed
Kelley, B.J., Yeager, K.R., Pepper, T.H., Bornstein, R.A., Beversdorf, D.Q. (2007). The effect of propranolol on cognitive flexibility and memory in acute cocaine withdrawal. Neurocase, 13, 320327. doi:10.1080/13554790701846148CrossRefGoogle ScholarPubMed
Kenworthy, L., Yerys, B., Anthony, L., Wallace, G. (2008). Understanding executive control in autism spectrum disorders in the lab and in the real world. Neuropsychology Review, 18, 320338. doi:10.1007/s11065-008-9077-7CrossRefGoogle ScholarPubMed
Koshino, H., Carpenter, P.A., Minshew, N.J., Cherkassky, V.L., Keller, T.A., Just, M.A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage, 24, 810821. doi:10.1016/j.neuroimage.2004.09.028CrossRefGoogle Scholar
Koshino, H., Kana, R.K., Keller, T.A., Cherkassky, V.L., Minshew, N.J., Just, M.A. (2008). fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18, 289300. doi:10.1093/cercor/bhm054CrossRefGoogle ScholarPubMed
Lake, C.R., Ziegler, M.G., Murphy, D.L. (1977). Increased norepinephrine levels and decreased dopamine-beta-hydroxylase activity in primary autism. Archives of General Psychiatry, 34, 553556. doi:10.1001/archpsyc.1977.01770170063005CrossRefGoogle ScholarPubMed
Levitt, J., Blanton, R., Smalley, S., Thompson, P., Guthrie, D., McCracken, J., Toga, A.W. (2003). Cortical sulcal maps in autism. Cerebral Cortex, 13, 728735. doi:10.1093/cercor/13.7.728CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659685. doi:10.1007/BF02172145CrossRefGoogle ScholarPubMed
Martchek, M., Thevarkunnel, S., Bauman, M., Blatt, G., Kemper, T. (2006). Lack of evidence of neuropathology in the locus coeruleus in autism. Acta Neuropathologica, 111, 497499. doi:10.1007/s00401-006-0061-0CrossRefGoogle ScholarPubMed
Milner, B., Petrides, M. (1984). Behavioural effects of frontal-lobe lesions in man. Trends in Neurosciences, 7, 403407. doi:10.1016/S0166-2236(84)80143-5CrossRefGoogle Scholar
Minderaa, R.B., Anderson, G.M., Volkmar, F.R., Akkerhuis, G.W., Cohen, D.J. (1994). Noradrenergic and adrenergic functioning in autism. Biological Psychiatry, 36, 237241. doi:10.1016/0006-3223(94)90605-XCrossRefGoogle ScholarPubMed
Muhle, R., Trentacoste, S.V., Rapin, I. (2004). The genetics of autism. Pediatrics, 113, e472e486. doi:10.1542/peds.113.5.e472CrossRefGoogle ScholarPubMed
Myers, S.M., Johnson, C.P. (2007). Management of children with autism spectrum disorders. Pediatrics, 120, 11621182. doi:10.1542/peds.2007-2362CrossRefGoogle ScholarPubMed
Narayanan, A., White, C.A., Saklayen, S., Scaduto, M.J., Carpenter, A.L., Abduljalil, A., Beversdorf, D.Q. (2010). Effect of propranolol on functional connectivity in autism spectrum disorder: A pilot study. Brain Imaging and Behavior, 4, 189197. doi:10.1007/s11682-010-9098-8CrossRefGoogle ScholarPubMed
Nickl-Jockschat, T., Habel, U., Maria Michel, T., Manning, J., Laird, A.R., Fox, P.T., Eickhoff, S.B. (2011). Brain structure anomalies in autism spectrum disorder: A meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping , doi:10.1002/hbm.21299 [Epub ahead of print]Google ScholarPubMed
Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., Sasaki, M. (2000). Abnormal regional blood flow in childhood autism. Brain, 123, 18381844. doi:10.1093/brain/123.9.1838CrossRefGoogle ScholarPubMed
Owen, A., McMillan, K., Laird, A., Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 4659. doi:10.1002/hbm.20131CrossRefGoogle ScholarPubMed
Ozonoff, S., Strayer, D., McMahon, W.M., Fillouz, F. (1994). Executive function abilities in autism: An informational processing approach. Journal of Child Psychology & Psychiatry, 35, 10151031. doi:10.1111/j.1469-7610.1994.tb01807.xCrossRefGoogle ScholarPubMed
Pennington, B.F., Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology & Psychiatry, 37, 5187. doi:10.1111/j.1469-7610.1996.tb01380.xCrossRefGoogle ScholarPubMed
Posey, D.J., Puntney, J.I., Sasher, T.M., Kem, D.L., McDougle, C.J. (2004). Guanfacine treatment of hyperactivity and inattention in pervasive developmental disorders: A retrospective analysis of 80 cases. Journal of Child and Adolescent Psychopharmacology, 14, 233241. doi:10.1089/1044546041649084CrossRefGoogle ScholarPubMed
Psychological Corporation (1999). Wechsler Abbreviated Scale of Intelligence. San Antonio, TX: Psychological Corporation.Google Scholar
Purcell, A.E., Jeon, O.H., Zimmerman, A.W., Blue, M.E., Pevsner, J. (2001). Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology, 57, 16181628. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11706102CrossRefGoogle ScholarPubMed
Rapin, I., Katzman, R. (1998). Neurobiology of autism. Annals of Neurology, 43, 714. doi:10.1002/ana.410430106CrossRefGoogle ScholarPubMed
Ratey, J.J., Bemporad, J., Sorgi, P., Bick, P., Polakoff, S., O'Driscoll, G., Mikkelsen, E. (1987). Open trial effects of beta-blockers on speech and social behaviors in 8 autistic adults. Journal of Autism and Developmental Disorders, 17, 439446. doi:10.1007/BF01487073CrossRefGoogle ScholarPubMed
Riccio, C.A., Reynolds, C.R., Lowe, P., Moore, J.J. (2002). The continuous performance test: A window on the neural substrates for attention? Archives of Clinical Neuropsychology, 17, 235272. doi:10.1016/S0887-6177(01)00111-1CrossRefGoogle Scholar
Rosvold, H.E., Mirsky, A.F., Sarason, I., Bransome, E.D., Beck, L.H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20, 343350. doi:10.1037/h0043220CrossRefGoogle Scholar
Russell, J. (1997). Autism as an executive disorder. Oxford: Oxford University Press.Google Scholar
Salmond, C.H., de Haan, M., Friston, K.J., Gadian, D.G., Vargha-Khadem, F. (2003). Investigating individual differences in brain abnormalities in autism. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 405413. doi:10.1098/rstb.2002.1210CrossRefGoogle ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298, 199209. doi:10.1098/rstb.1982.0082Google ScholarPubMed
Steele, S.D., Minshew, N.J., Luna, B., Sweeney, J.A. (2007). Spatial working memory deficits in autism. Journal of Autism and Developmental Disorders, 37, 605612. doi:10.1007/s10803-006-0202-2CrossRefGoogle ScholarPubMed
Stuss, D.T., Benson, D.F. (1986). The frontal lobes. New York: Raven.Google Scholar
Williams, D.L., Goldstein, G., Minshew, N.J. (2006). The profile of memory function in children with autism. Neuropsychology, 20, 2129. doi:10.1037/0894-4105.20.1.21CrossRefGoogle ScholarPubMed
Williams, D.L., Goldstein, G., Carpenter, P.A., Minshew, N.J. (2005). Verbal and spatial working memory in autism. Journal of Autism and Developmental Disorders, 35, 747756. doi:10.1007/s10803-005-0021-xCrossRefGoogle ScholarPubMed