Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:57:44.113Z Has data issue: false hasContentIssue false

Naming in Older Adults: Complementary Auditory and Visual Assessment

Published online by Cambridge University Press:  04 June 2021

Marla J. Hamberger*
Affiliation:
Department of Neurology, Columbia University, New York, NY, USA
Nahal Heydari
Affiliation:
Department of Neurology, Columbia University, New York, NY, USA
Elise Caccappolo
Affiliation:
Department of Neurology, Columbia University, New York, NY, USA
William T. Seidel
Affiliation:
Consultation Services, Hastings on Hudson, NY, USA
*
*Correspondence and reprint requests to: Marla J. Hamberger, Ph.D., Department of Neurology, Columbia University Medical Center, 710 West 168th Street, 7th floor, New York, NY 10032, USA. E-mail: mh61@columbia.edu. Fax: 212.305.1450

Abstract

Objectives:

Naming difficulty is a common symptom of multiple age-related neurodegenerative disorders. As naming difficulty increases with age, valid, up-to-date naming assessment tools are crucial for differentiating between neurotypical changes in healthy aging and pathological naming difficulty. We aimed to develop and provide normative data for complementary auditory description naming and visual naming tests for older adults. Furthermore, these measures would include not only untimed accuracy, typically the sole naming performance measure, but also additional scores that incorporate features characteristic of actual word finding difficulty.

Methods:

A normative sample of 407 healthy older adults, aged 56–100 years, were administered the Auditory Naming Test (ANT) and Visual Naming Test (VNT), and other standardized measures.

Results:

Item analyses resulted in 36 stimuli for both tests. Age-stratified, education-based normative data are provided for accuracy, response time, tip-of-the-tongue (i.e., delayed, yet accurate responses plus correct responses following phonemic cueing), and multiple Summary Scores. Internal and test–retest reliability coefficients were reasonable (.59–.84). Untimed accuracy scores were high across age groups, seemingly reflecting stability of naming into late adulthood; however, time- and cue-based scores revealed reduced efficiency in word retrieval with increasing age.

Conclusions:

These complementary auditory and visual naming test for older adults improve upon the current standard by providing more sensitive performance measures and the addition of an auditory–verbal component for assessing naming. Detection of subtle naming changes in healthy aging holds promise for capturing symptomatic naming changes during the early stages of neurocognitive disorders involving expressive language, potentially assisting in earlier diagnoses and more timely treatment.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M.S. (1995). How does education affect cognitive function? Annals of Epidemiology, 5(1), 7678. https://doi.org/10.1016/1047-2797(94)00044-t CrossRefGoogle ScholarPubMed
Alsop, D.C., Detre, J., D’Esposito, M., Howard, R.S., Maldjian, J.A., Grossman, M., … Atlas, S.W. (1996). Functional activation during an auditory comprehension task in patients with temporal lobe lesions. NeuroImage, 4(1), 5559.CrossRefGoogle ScholarPubMed
Au, R., Joung, P., Nicholas, M., Obler, L.K., Kass, R., & Albert, M.L. (1995). Naming ability across the adult life span. Aging, Neuropsychology, and Cognition, 2(4), 300311. https://doi.org/10.1080/13825589508256605 CrossRefGoogle Scholar
Baron, I.S. (2004). Neuropsychological Evaluation of the Child. New York, NY: Oxford University Press.Google Scholar
Bell, B., Seidenberg, M., Hermann, B., & Douville, K. (2003). Visual and auditory naming in patients with left or bilateral temporal lobe epilepsy. Epilepsy Research, 55, 2937.CrossRefGoogle ScholarPubMed
Benton, A.L. & Hamsher, K. (1989). Multilingual Aphasia Examination. Iowa City: AJA Associates.Google Scholar
Boatman, D., Lesser, R.P., & Gordon, B. (1995). Auditory speech processing in the left temporal lobe: an electrical interference study. Brain and Language, 51, 269290.CrossRefGoogle ScholarPubMed
Bookheimer, S.Y., Zeffiro, T.A., Blaxton, T.A., Gaillard, W.D., Malow, B., & Theodore, W.H. (1998). Regional cerebral blood flow during auditory responsive naming: evidence for cross-modality neural activation. NeuroReport, 9, 24092413.CrossRefGoogle ScholarPubMed
Brown, R.G., Lacomblez, L., Landwehrmeyer, B.G., Bak, T., Uttner, I., Dubois, B., … , & Study., G. N. (2010). Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain, 133(8), 23822393. https://doi.org/https://doi.org/10.1093/brain/awq158 CrossRefGoogle ScholarPubMed
Burke, D., Worthley, J., & Martin, J. (1988). I’ll never forget what’s-her-name: aging and tip of the tongue experiences in everyday life. Practical Aspects of Memory: Current Research and Issues, 2, 113118.Google Scholar
Burke, D.M., Mackay, D., Worthley, J., & Wade, E. (1991). On tip-of-the-tongue: what causes word finding failures in young and older adults? Journal of Memory and Language, 30, 542579.CrossRefGoogle Scholar
Burke, D.M. & Shafto, M.A. (2008). The Handbook of Aging and Cognition (Craik, F. I. M., Ed. 2 ed.). Mahwah, NJ: Psychology Press.Google Scholar
Cervenka, M.C., Corines, J., Boatman-Reich, D.F., Eloyan, A., Sheng, X., Franaszczuk, P.J., & Crone, N.E. (2013). Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming. NeuroImage, 69, 267276. https://doi.org/http://dx.doi.org/10.1016/j.neuroimage.2012.12.037 CrossRefGoogle ScholarPubMed
Connor, L.T., Spiro, A. III, Obler, L.K., & Albert, M.L. (2004). Change in object naming ability during adulthood. The Journals of Gerontology: Series B, 59(5), 203209. https://doi.org/10.1093/geronb/59.5.P203 CrossRefGoogle ScholarPubMed
Dickerson, J. & Humphreys, G.W. (1999). On the identification of misoriented objects: effects of task and level of stimulus description. European Journal of Cognitive Psychology, 11(2), 145166. https://doi.org/10.1080/713752310 CrossRefGoogle Scholar
Ferris, S. & Farlow, M. (2013). Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin Interv Aging, 8, 10071014. https://doi.org/doi:10.2147/CIA.S39959 CrossRefGoogle Scholar
Fields, J.A., Machulda, M., Aakre, J., Ivnik, R.J., Boeve, B.F., Knopman, D.S., Petersen, R.C., & Smith, G.E. (2010). Utility of the DRS for predicting problems in day-to-day functioning. The Clinical Neuropsychologist, 24, 11671180.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. https://doi.org/10.1016/0022-3956(75)90026-6 CrossRefGoogle ScholarPubMed
Geerligs, L., Maurits, N.M., Renken, R.J., & Lorist, M.M. (2014). Reduced specificity of functional connectivity in the aging brain during task performance. Human Brain Mapping, 35(1), 319330. https://doi.org/10.1002/hbm.22175 CrossRefGoogle ScholarPubMed
Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., & Lorist, M.M. (2014). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 19871999. https://doi.org/https://doi.org/10.1093/cercor/bhu012 CrossRefGoogle ScholarPubMed
Gerlach, C. (2017). Different measures of structural similarity tap different aspects of visual object processing. Frontiers in Psychology, 8, 1404. https://doi.org/https://doi.org/10.3389/fpsyg.2017.01404 CrossRefGoogle ScholarPubMed
Goodglass, H. (1980). Naming disorders in aphasia and aging. In Obler, L. K. & Albert, M. L. (Eds.), Language and communication in the elderly: Clinical, therapeutic, and experimental issues (pp. 3745). Toronto, Canada: Lexington Books.Google Scholar
Goodglass, H., Theurkauf, J.C., & Wingfield, A. (1984). Naming latencies as evidence for two modes of lexical retrieval. Applied Psycholinguistics, 5, 135146.CrossRefGoogle Scholar
Gooding, A., Cole, J.R., & Hamberger, M.J. (2018). Assessment of naming in non-native English speakers with Epilepsy. Journal of the International Neuropsychological Society, 24(10), 10571063. https://doi.org/10.1017/s1355617718000632 CrossRefGoogle ScholarPubMed
Goulet, P., Ska, B., & Kahn, H.J. (1994). Is there a decline in picture naming with advancing age? Journal of Speech, Language, and Hearing Research, 37(3), 629644.CrossRefGoogle Scholar
Grootswagers, T., Wardle, S.G., & Carlson, T.A. (2017). Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677697. https://doi.org/https://doi.org/10.1162/jocn_a_01068 CrossRefGoogle ScholarPubMed
Hadac, J., Brozova, K., Tintera, J., & Krsek, P. (2007). Language lateralization in children with pre- and postnatal epileptogenic lesions of the left hemisphere: an fMRI study. Epileptic Disorders, 9 (Suppl 1), S19S27.Google ScholarPubMed
Hamberger, M.J. (2015). Object naming in epilepsy and epilepsy surgery. Epilepsy & Behavior, 46, 2733.CrossRefGoogle ScholarPubMed
Hamberger, M.J., Goodman, R.R., Perrine, K., & Tamny, T. (2001). Anatomical dissociation of auditory and visual naming in the lateral temporal cortex. Neurology, 56, 5661.CrossRefGoogle Scholar
Hamberger, M.J., Habeck, C.G., Pantazatos, S.P., Williams, A.C., & Hirsch, J. (2014). Shared space, separate processes: Neural activation patterns for auditory description and visual object naming in healthy adults. Human Brain Mapping, 35(6), 25072520. https://doi.org/http://dx.doi.org/10.1002/hbm.22345 CrossRefGoogle ScholarPubMed
Hamberger, M.J., MacAllister, W.S., Seidel, W.T., Busch, R.M., Salinas, C.M., Klaas, P., & Smith, M.L. (2019). Noninvasive identification of seizure lateralization in children: name that thing. Neurology, 92(1). https://doi.org/https://doi.org/10.1212/WNL.0000000000006691 CrossRefGoogle Scholar
Hamberger, M.J., McClelland, S., Williams, A.C., Goodman, R.R., & McKhann, G.M. (2007). Distribution of auditory and visual naming sites in nonlesional temporal lobe epilepsy patients and patients with space-occupying temporal lobe lesions. Epilepsia, 48(3), 531538.CrossRefGoogle ScholarPubMed
Hamberger, M.J. & Seidel, W.T. (2003). Auditory and visual naming tests: normative and patient data for accuracy, response time, and tip-of-the-tongue. Journal of the International Neuropsychological Society, 9(3), 479489. https://doi.org/10.1017/s135561770393013x CrossRefGoogle ScholarPubMed
Hamberger, M.J. & Seidel, W.T. (2009). Localization of cortical dysfunction based on auditory and visual naming performance. Journal of the International Neuropsychological Society 15, 529535.CrossRefGoogle Scholar
Hamberger, M.J., Seidel, W.T., Goodman, R.R., & McKhann, G.M. II. (2010). Does cortical mapping protect naming if surgery includes hippocampal resection? Annals of Neurology, 67(3), 345352. https://doi.org/http://dx.doi.org/10.1002/ana.21903 Google ScholarPubMed
Hamberger, M.J., Seidel, W.T., MacAllister, W.S., & Smith, M.L. (2018). Auditory and visual naming tests for children [Empirical Study; Quantitative Study]. Child Neuropsychology, 24(7), 903922. https://doi.org/http://dx.doi.org/10.1080/09297049.2017.1414172 CrossRefGoogle Scholar
Hamberger, M.J. & Tamny, T. (1999). Auditory naming and temporal lobe epilepsy. Epilepsy Research, 35, 229243.CrossRefGoogle ScholarPubMed
Hanna-Pladdy, B. & Choi, H. (2010). Age-related deficits in auditory confrontation naming. Psychology and Aging, 25(3), 691696. https://doi.org/10.1037/a0019455 CrossRefGoogle ScholarPubMed
Harada, C.N., Natelson Love, M.C., & Triebel, K.L. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29(4), 737752. https://doi.org/10.1016/j.cger.2013.07.002 CrossRefGoogle ScholarPubMed
Hawkins, K.A. & Bender, S. (2002). Norms and the relationship of Boston Naming Test performance to vocabulary and education: a review. Aphasiology, 16(12), 11431153. https://doi.org/10.1080/02687030244000031 CrossRefGoogle Scholar
Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 24252430.CrossRefGoogle ScholarPubMed
Heaton, R.K., Miller, S.W., Taylor, M.J., & Grant, I. (2004). Revised Comprehensive Norms for an Expanded Halstead-Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults. Lutz: Psychological Assessment Resources.Google Scholar
Hirsch, J.A., Cuesta, G.M., Jordan, B.D., Fonzetti, P., & Levin, L. (2016). The auditory naming test improves diagnosis of naming deficits in dementia. SAGE Open, 6, 110.CrossRefGoogle Scholar
Humphreys, G.W., Riddoch, M.J., & Quinlan, P.T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5, 67104.CrossRefGoogle Scholar
Jurica, P.J., Leittan, C.L., & Mattis, S. (2001). DRS-2: Dementia rating scale—2 Professional Manual. Lutz: Psychological Assessment Resources.Google Scholar
Kaplan, E.F., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test, 2nd Edition. Philadelphia: Lea & Febiger.Google Scholar
Kemper, S. & Sumner, A. (2001). The structure of verbal abilities in young and older adults. Psychology and Aging, 16(2), 312322. https://doi.org/10.1037/0882-7974.16.2.312 CrossRefGoogle ScholarPubMed
Kempler, D. & Goral, M. (2008). Language and dementia: neuropsychological aspects. Annual Review of Applied linguistics, 28, 7390. https://doi.org/doi:10.1017/S0267190508080045 CrossRefGoogle ScholarPubMed
Lloyd-Jones, T.J. & Humphreys, G.W. (1997). Perceptual differentiation as a source of category effects in object processing: evidence from naming and object decision. Memory & Cognition, 25(1), 1835.CrossRefGoogle ScholarPubMed
MacKay, A.J., Connor, L.T., Albert, M.L., & Obler, L.K. (2002). Noun and verb retrieval in healthy aging. Journal of the International Neuropsychological Society, 8(6), 764770. https://doi.org/10.1017/s1355617702860040 CrossRefGoogle ScholarPubMed
Malow, B.A., Blaxton, T.A., Susumu, S., Bookheimer, S., Kufta, C.V., Figlozzi, C.M., & Theodore, W.H. (1996). Cortical stimulation elicits regional distinctions in auditory and visual naming. Epilepsia, 37(3), 245252. http://www.ncbi.nlm.nih.gov/pubmed/8598182 CrossRefGoogle ScholarPubMed
Martielli, T.M. & Blackburn, L.B. (2016). When a funnel becomes a martini glass: adolescent performance on the Boston Naming test. Child Neuropsychology, 22(4), 381393. https://doi.org/https://doi.org/10.1080/09297049.2015.1014899 CrossRefGoogle ScholarPubMed
Melikyan, Z.A., Corrada, M.M., Dick, M.B., Whittle, C., Paganini-Hill, A., & Kawas, C.H. (2019). Neuropsychological test norms in cognitively intact oldest-old. Journal of the International Neuropsychological Society, 25(5), 530545. https://doi.org/10.1017/s1355617719000122 CrossRefGoogle ScholarPubMed
Meunier, D., Achard, S., Morcom, A., & Bullmore, E. (2009). Age-related changes in modular organization of human brain functional networks. NeuroImage, 44(3), 715723. https://doi.org/10.1016/j.neuroimage CrossRefGoogle ScholarPubMed
Meunier, D., Stamatakis, E.A., & Tyler, L.K. (2014). Age-related functional reorganization, structural changes, and preserved cognition. Neurobiol Aging. Neurobiological Aging, 35(1), 4254. https://doi.org/10.1016/j.neurobiolaging.2013.07.003 CrossRefGoogle ScholarPubMed
Miller, K.M., Finney, G.R., Meader, K.J., & Loring, D.W. (2010). Auditory responsive naming versus visual confrontation naming in dementia. The Clinical Neuropsychologist, 24(1), 103118.CrossRefGoogle ScholarPubMed
Mitrushina, M., Boone, K.B., Razani, J., & D’Elia, L.F. (2005). The Boston Naming Test. In Mitrushina, M., Boone, K. B., Razani, J., & D’Elia, L. F. (Eds.), Handbook of normative data for neuropsychological assessment (2 ed., pp. 173199). New York, NY: Oxford University Press.Google Scholar
Murman, D.L. (2015). The impact of age on cognition. Seminars in Hearing, 36(3), 111121. https://doi.org/10.1055/s-0035-1555115 Google ScholarPubMed
Murphy, C.F.B., Rabelo, C.M., Silagi, M.L., Mansur, L.L., & Schochat, E. (2016). Impact of educational level on performance on auditory processing tests. Frontiers in Neuroscience, 10, 97. https://doi.org/10.3389/fnins.2016.00097 CrossRefGoogle ScholarPubMed
Nunnally, J.C. & Bernstein, I. (1994). Psychometric theory, 3 ed.. New York, NY: McGraw-Hill.Google Scholar
Okada, K. (2013). Is omega squared less biased? a comparison of three major effect size indices in one-way anova. Behaviormetrika, 40, 129147. https://doi.org/https://doi.org/10.2333/bhmk.40.129 CrossRefGoogle Scholar
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56(3), 303308.CrossRefGoogle ScholarPubMed
Ramsay, C.B., Nicholas, M., Au, R., Obler, L.K., & Albert, M.L. (1999). Verb naming in normal aging. Applied Neuropsychology, 6(2), 5767. https://doi.org/10.1207/s15324826an0602_1 CrossRefGoogle ScholarPubMed
Randolph, C., Lansing, A.E., Ivnik, R.J., Munro Cullum, C., & Hermann, B.P. (1999). Determinants of confrontation naming performance. Archives of Clinical Neuropsychology, 14(6), 489496.CrossRefGoogle ScholarPubMed
Reis, A., Faísca, L., Ingvar, M., & Petersson, K.M. (2006). Color makes a difference: two-dimensional object naming in literate and illiterate subjects. Brain and Cognition, 60(1), 4954. https://doi.org/10.1016/j.bandc.2005.09.012 CrossRefGoogle ScholarPubMed
Roberts, R.J. & Hamsher, K.D. (1984). Effects of minority status on facial recognition and naming performance. Journal of Clinical Psychology, 40(2), 539545.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Salkind, N.J. (2010). Encyclopedia of Research Design. https://doi.org/doi:10.4135/97814129612881 CrossRefGoogle Scholar
Salthouse, T.A. (2003). Memory aging from 18 to 80. Alzheimer Disease and Associated Disorders, 17(3), 162167. https://doi.org/10.1097/00002093-200307000-00008 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507514. https://doi.org/http://dx.doi.org/10.1016/j.neurobiolaging.2008.09.023 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society, 16(5), 754760. https://doi.org/http://dx.doi.org/10.1017/S1355617710000706 CrossRefGoogle ScholarPubMed
Schmitter-Edgecombe, M., Vesneski, M., & Jones, D.W.R. (2000). Aging and word-finding: a comparison of spontaneous and constrained naming tests. Archives of Clinical Neuropsychology, 15(6), 479493.Google ScholarPubMed
Shafto, M.A., Stamatakis, E.A., Tam, P.P., & Tyler, L. (2010). Word retrieval failures in old age: the relationship between structure and function. Journal of Cognitive Neuroscience, 22(7), 15301540. https://doi.org/http://dx.doi.org/10.1162/jocn.2009.21321 CrossRefGoogle ScholarPubMed
Speisman, R.B., Kumar, A., Rani, A., Foster, T.C., & Ormerod, B.K. (2013). Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain, Behavior, and Immunity, 28, 2543. https://doi.org/10.1016/j.bbi.2012.09.013 CrossRefGoogle ScholarPubMed
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet. Neurology, 11(11), 10061012. https://doi.org/https://doi.org/10.1016/S1474-4422(12)70191-6 CrossRefGoogle ScholarPubMed
Stern, Y., Sano, M., Paulson, J., & Mayeux, R. (1987). Modified mini-mental state examination : validity and reliability. Neurology, 37(suppl 1), 179.Google Scholar
Tomaszewki-Farias, S., Harrington, G., Broomand, C., & Seyal, M. (2005). Differences in functional MR imaging activation patterns associated with confrontation naming and responsive naming. American Journal of Neuroradiology, 26(10), 24922499.Google ScholarPubMed
Verhaeghen, P. (2003). Aging and Vocabulary Score: A Meta-Analysis. ]. American Psychological Association. doi: 10.1037/0882-7974.18.2.332 CrossRefGoogle Scholar
Vigneau, M., Beaucousin, V., Herve, P.Y., Duffau, H., Crivello, F., Houde, O., Mazoyer, B., & Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing [Meta-Analysis]. NeuroImage, 30(4), 14141432.CrossRefGoogle Scholar
Vuorinen, E., Laine, M., & Rinne, J. (2000). Common pattern of language impairment in vascular dementia and in Alzheimer disease. Alzheimer Disease and Associated Disorders, 14(2), 8186.CrossRefGoogle ScholarPubMed
Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence–Second Edition (WASI-II). San Antonio, TX: NCS Pearson.Google Scholar
Yochim, B., Kane, K., & Mueller, A. (2009). Naming test of the neuropsychological assessment battery: convergent and discriminant validity. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 24, 575583. https://doi.org/10.1093/arclin/acp053 CrossRefGoogle ScholarPubMed
Supplementary material: File

Hamberger et al. supplementary material

Hamberger et al. supplementary material

Download Hamberger et al. supplementary material(File)
File 21.7 KB