Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:46:10.810Z Has data issue: false hasContentIssue false

Impaired Comprehension of Speed Verbs in Parkinson’s Disease

Published online by Cambridge University Press:  19 April 2017

Laura J. Speed*
Affiliation:
Centre for Language Studies, Radboud University, Nijmegen, Netherlands
Wessel O. van Dam
Affiliation:
Department of Psychology, University of South Carolina, Columbia, South Carolina
Priyantha Hirath
Affiliation:
School of Medicine, University of South Carolina, Columbia, South Carolina
Gabriella Vigliocco
Affiliation:
Experimental Psychology Department, University College London, London, United Kingdom
Rutvik H. Desai
Affiliation:
Department of Psychology, University of South Carolina, Columbia, South Carolina
*
Correspondence and reprint requests to: Laura J. Speed, Radboud University, Erasmusplein 1, Nijmegen 6500HD, Netherlands. E-mail: l.speed@let.ru.nl

Abstract

Objectives: A wealth of studies provide evidence for action simulation during language comprehension. Recent research suggests such action simulations might be sensitive to fine-grained information, such as speed. Here, we present a crucial test for action simulation of speed in language by assessing speed comprehension in patients with Parkinson’s disease (PD). Based on the patients’ motor deficits, we hypothesized that the speed of motion described in language would modulate their performance in semantic tasks. Specifically, they would have more difficulty processing language about relatively fast speed than language about slow speed. Methods: We conducted a semantic similarity judgment task on fast and slow action verbs in patients with PD and age-matched healthy controls. Participants had to decide which of two verbs most closely matched a target word. Results: Compared to controls, PD patients were slower making judgments about fast action verbs, but not for judgments about slow action verbs, suggesting impairment in processing language about fast action. Moreover, this impairment was specific to verbs describing fast action performed with the hand. Conclusions: Problems moving quickly lead to difficulties comprehending language about moving quickly. This study provides evidence that speed is an important part of action representations. (JINS, 2017, 23, 412–420)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bak, T.H., O’Donovan, D.G., Xuereb, J.H., Boniface, S., & Hodges, J.R. (2001). Selective impairment of verb processing associated with pathological changes in the Brodman areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain, 124, 103120. doi: 10.1093/brain/124.1.103 Google Scholar
Bak, T.H. (2013). The neuroscience of action semantics in neurodegenerative brain diseases. Current Opinion in Neurology, 26(6), 671677. doi: 10.1097/WCO.0000000000000039 Google Scholar
Barsalou, L.W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577609.CrossRefGoogle ScholarPubMed
Barsalou, L.W., Santos, A., Simmons, W.K., & Wilson, C.D. (2008). Language and simulation in conceptual processing. In M. De Vega, A.M. Glenberg & A.C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245283). Oxford: Oxford University Press.Google Scholar
Binder, J.R., & Desai, R.H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527536. doi: 10.1016/j.tics.2011.10.001.Google Scholar
Bocanegra, Y., García, A.M., Pineda, D., Baena, A., Ospina, P., ... Cuetos, F. (2017). Unspeakable motion: Selective action-verb impairments in Parkinson’s disease patients without mild cognitive impairment. Brain and Language, 168, 3746. doi: 10.1016/j.bandl.2017.01.005 Google Scholar
Bocanegra, Y., García, A.M., Pineda, D., Buriticá, O., Villegas, A., Lopera, F., & Ibáñez, A. (2015). Syntax, action verbs, action semantics, and object semantics in Parkinson’s disease: Dissociability, progression, and executive influences. Cortex, 69, 237254. doi: 10.1016/j.cortex.2015.05.022 Google Scholar
Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E.C., Jeannerod, M., & Nazier, T. (2008). Word processing in Parkinson’s Disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46(2), 743756. doi: 10.1016/j.neuropsychologia.2007.10.007 Google Scholar
Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., & Munafo, M.R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365376.CrossRefGoogle ScholarPubMed
Cardona, J.F., Kargieman, L., Sinay, V., Gershanik, O., Gelormini, C., Amoruso, L., & Ibáñez, A. (2014). How embodied is action language? Neurological evidence from motor diseases. Cognition, 131(2), 311322. doi: 10.1016/j.cognition.2014.02.001 CrossRefGoogle ScholarPubMed
Desai, R.H., Herter, T., Riccardi, N., Rorden, C., & Fridriksson, J. (2015). Concepts within reach: Action performance predicts action language processing in stroke. Neuropsychologia, 71, 217224. doi: 10.1016/j.neuropsychologia.2015.04.006 Google Scholar
Fernandino, L., Conant, L.L., Binder, J.R., Blindauer, K., Hiner, B., Spangler, K., & Desai, R.H. (2013a). Parkinson’s disease disrupts both automatic and controlled processing of action verbs. Brain and Language, 27(1), 6574. doi: 10.1016/j.bandl.2012.07.008 Google Scholar
Fernandino, L., Conant, L., Binder, J.R., Blindauer, K., Hiner, B., Spangler, K., & Desai, R.H. (2013b). Where is the action? Action sentence processing in Parkinson’s disease. Neuropsychologia, 51(8), 15101517. doi: 10.1016/j.neuropsychologia.2013.04.008 CrossRefGoogle ScholarPubMed
Fischer, M.H., & Zwaan, R.A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Psychology, 61(6), 825850. doi: 10.1080/17470210701623605 Google Scholar
García, A.M., Carrillo, F., Orozco-Arroyave, J.R., Trujillo, N., Vargas Bonilla, J.F., Fittipaldi, S., & Cecchi, G.A. (2016). How language flows when movements don’t: An automated analysis of spontaneous discourse in Parkinson’s disease. Brain and Language, 162, 1928. doi: 10.1016/j.bandl.2016.07.008 Google Scholar
García, A.M., & Ibáñez, A. (2016). A touch with words: Dynamic synergies between manual actions and language. Neuroscience & Biobehavioral Reviews, 68, 5995.Google Scholar
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301307. doi: 10.1016/S0896-6273(03)00838-9 Google Scholar
Helmich, R.C., Hallett, M., Deuschl, G., Toni, I., & Bloem, B.R. (2012). Cerebral causes and consequences of parkinsonian resting tremor: A tale of two circuits? Brain, 135(11), 32063226. doi: 10.1093/brain/aws023.Google Scholar
Higginson, C.I., King, D.S., Levine, D., Wheelock, V.L., Khamphay, N.O., & Sigvardt, K.A. (2003). The relationship between executive function and verbal memory in Parkinson’s disease. Brain and Cognition, 52(3), 343352. doi: 10.1016/S0278-2626(03)00180-5 Google Scholar
Kemmerer, D., Miller, L., MacPherson, M.K., Huber, J., & Tranel, D. (2013). An investigation of semantic similarity judgments about action and non-action verbs in Parkinson’s disease: Implications for the embodied cognition framework. Frontiers in Human Neuroscience, 7, 146. doi: 10.3389/fnhum.2013.00146 Google Scholar
Landauer, T.K., & Dumais, S.T. (1997). A solution to Plato’s problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211240. doi: 10.1037/0033-295X.104.2.211 Google Scholar
Lebois, L.A.M., Wilson-Mendenthal, C.D., & Barsalou, L.W. (2015). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effect. Cognitive Science, 39(8), 17641801. doi: 10.1111/cogs.12174 CrossRefGoogle Scholar
Levy, G., Jacobs, D.M., Tang, M.-X., Côté, L.J., Louis, E.D., Alfaro, B., & Marder, K. (2002). Memory and executive function impairment predict dementia in Parkinson’s disease: Dementia in Parkinson’s Disease. Movement Disorders, 17(6), 12211226. doi: 10.1002/mds.10280 Google Scholar
Louwerse, M.M., & Jeuniaux, P. (2008). How fundamental is embodiment to language comprehension? Constraints on embodied cognition. In V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 13131318). Austin, TX: Cognitive Science Society.Google Scholar
Mckinlay, A., Grace, R.C., Dalrymple-Alford, J.C., & Roger, D. (2010). Characteristics of executive function impairment in Parkinson’s disease patients without dementia. Journal of the International Neuropsychological Society, 16(02), 268. doi: 10.1017/S1355617709991299 CrossRefGoogle ScholarPubMed
Melloni, M., Sedeño, L., Hesse, E., García-Cordero, I., Mikulan, E., Plastino, A., & Ibáñez, A. (2015). Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease. Scientific Reports, 5, 11899. doi: 10.1038/srep11899 Google Scholar
Moody, C.L., & Gennari, S.P. (2010). Effects of implied physical effort in sensory-motor and prefrontal cortex during language comprehension. Neuroimage, 49, 782793.Google Scholar
Rascol, O., Umberto, S., Chollet, F., Celsis, P., Montastruc, J., Marc-Vergnes, J., & Rascol, A. (1992). Regional cerebral blood flow changes during finger movements and effects of apormorphine. Archives of Neurology, 49(2), 144148.Google Scholar
Rodriguez-Oroz, M.C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E., & Obeso, J.A. (2009). Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. The Lancet Neurology, 8(12), 11281139.Google Scholar
Rueschemeyer, S.-A., Lindemann, O., van Rooij, D., van Dam, W., & Bekkering, H. (2010). Effects of intentional motor actions on embodied language processing. Experimental Psychology, 57(4), 260266.CrossRefGoogle ScholarPubMed
Sanford, A.J. (2008). Defining embodiment in understanding. In M. De Vega, A.M. Glenberg & A. Graesser (Eds.), Symbols and embodiment: Debates in meaning and cognition. Oxford, England: Oxford University Press.Google Scholar
Samii, A., Nutt, J.G., Ransom, B.R., & Sampaio, C. (2004). Parkinson’s disease. Lancet, 363, 17831793.Google Scholar
Schwanenflugel, P. (1991). Why are abstract concepts hard to understand?. In P.J. Schwanenflugel (Ed.), The psychology of word meaning (pp. 223250). Mahwah, NJ: Erlbaum.Google Scholar
Speed, L.J., & Vigliocco, G. (2014). Eye movements reveal the dynamic simulation of speed in language. Cognitive Science, 38(2), 367382. doi: 10.1111/cogs.12096 Google Scholar
Speed, L.J., & Vigliocco, G. (2015). Space, time and speed in language and perception. In Y. Coello & M. Fischer (Eds.), Foundations of embodied cognition. New York: Psychology Press.Google Scholar
van Dam, W.O., Rueschemeyer, S.-A., & Bekkering, H. (2010). How specifically are action verbs represented in the neural motor system: An fMRI study. Neuroimage, 53(4), 13181325. doi: 10.1016/j.neuroimage.2010.06.071 Google Scholar
van Dam, W.O., Speed, L.J., Lai, V., Vigliocco, G., & Desai, R.H. (2017). Effects of motion speed in action representations. Brain and Language, 168, 4756.Google Scholar
Wang, J., Conder, J.A., Blitzer, D.N., & Shinkareva, S.V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 14591468. doi: 10.1002/hbm.20950 Google Scholar
Weintraub, D., Moberg, P.J., Culbertson, W.C., Duda, J.E., Katz, I.R., & Stern, M.B (2005). Dimensions of executive function in Parkinson’s disease. Dementia and Geriatric Cognitive Disorders, 20(2-3), 140144. doi: 10.1159/000087043 Google Scholar
Xu, D., Cole, M.H., Mengersen, K., Silburn, P.A., Qiu, F., Graepel, C., & Kerr, G.K. (2014). Executive function and postural instability in people with Parkinson’s disease. Parkinson’s Disease, 2014, 18. doi: 10.1155/2014/684758 Google Scholar
York, C., Olm, C., Boller, A., McCluskey, L., Elman, L., Haley, J., & Grossman, M. (2014). Action verb comprehension in amyotrophic lateral sclerosis and Parkinson’s disease. Journal of Neurology, 261(6), 10731079. doi: 10.1007/s00415-014-7314-y Google Scholar