Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:03:32.461Z Has data issue: false hasContentIssue false

The impact of mild cognitive impairment on decision-making under explicit risk conditions: Evidence from the Personality and Total Health (PATH) Through Life longitudinal study

Published online by Cambridge University Press:  03 November 2022

Craig Sinclair*
Affiliation:
School of Psychology, University of New South Wales, Sydney, Australia Australian Research Council Centre of Excellence in Population Ageing Research, University of New South Wales, Sydney, Australia UNSW Ageing Futures Institute, University of New South Wales, Sydney, Australia Neuroscience Research Australia (NeuRA), Sydney, Australia
Ranmalee Eramudugolla
Affiliation:
School of Psychology, University of New South Wales, Sydney, Australia UNSW Ageing Futures Institute, University of New South Wales, Sydney, Australia
Nicolas Cherbuin
Affiliation:
Australian Research Council Centre of Excellence in Population Ageing Research, University of New South Wales, Sydney, Australia Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
Moyra E. Mortby
Affiliation:
School of Psychology, University of New South Wales, Sydney, Australia UNSW Ageing Futures Institute, University of New South Wales, Sydney, Australia Neuroscience Research Australia (NeuRA), Sydney, Australia
Kaarin J. Anstey
Affiliation:
School of Psychology, University of New South Wales, Sydney, Australia UNSW Ageing Futures Institute, University of New South Wales, Sydney, Australia Neuroscience Research Australia (NeuRA), Sydney, Australia Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
*
Corresponding author: Craig Sinclair, email: c.sinclair@unsw.edu.au

Abstract

Objective:

Previous research has indicated that cognition and executive function are associated with decision-making, however the impact of mild cognitive impairment (MCI) on decision-making under explicit risk conditions is unclear. This cross-sectional study examined the impact of MCI, and MCI subtypes, on decision-making on the Game of Dice Task (GDT), among a cohort of older adults.

Method:

Data from 245 older adult participants (aged 72–78 years) from the fourth assessment of the Personality and Total Health Through Life study were analyzed. A diagnostic algorithm identified 103 participants with MCI, with subtypes of single-domain amnestic MCI (aMCI-single; n = 38), multi-domain amnestic MCI (aMCI-multi; n = 31), and non-amnestic MCI (n = 33), who were compared with an age-, sex-, education-, and income-matched sample of 142 cognitively unimpaired older adults. Decision-making scores on the GDT (net score, single number choices, and strategy changes) were compared between groups using nonparametric tests.

Results:

Participants with MCI showed impaired performance on the GDT, with higher frequencies of single number choices and strategy changes. Analyses comparing MCI subtypes indicated that the aMCI-multi subtype showed increased frequency of single number choices compared to cognitively unimpaired participants. Across the sample of participants, decision-making scores were associated with measures of executive function (cognitive flexibility and set shifting).

Conclusion:

MCI is associated with impaired decision-making performance under explicit risk conditions. Participants with impairments in multiple domains of cognition showed the clearest impairments. The GDT may have utility in discriminating between MCI subtypes.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 270279. https://doi.org/10.1016/j.jalz.2011.03.008 CrossRefGoogle ScholarPubMed
Allain, P., Etcharry-Bouyx, F., & Verny, C. (2013). Executive functions in clinical and preclinical Alzheimer’s disease. Revue Neurologique, 169, 695708. https://doi.org/10.1016/j.neurol.2013.07.020 CrossRefGoogle ScholarPubMed
Anstey, K. J., Butterworth, P., Christensen, H., Easteal, S., Cherbuin, N., Leach, L., Burns, R., Kiely, K. M., Mortby, M. E., Eramudugolla, R., & Gad, I. (2021). Cohort profile update: The PATH through life project. International Journal of Epidemiology, 50, 3536. https://doi.org/10.1093/ije/dyaa179 CrossRefGoogle ScholarPubMed
Anstey, K. J., Christensen, H., Butterworth, P., Easteal, S., Mackinnon, A., Jacomb, T., Maxwell, K., Rodgers, B., Windsor, T., Cherbuin, N., & Jorm, A. F. (2012). Cohort profile: The PATH through life project. International Journal of Epidemiology, 41, 951960. https://doi.org/10.1093/ije/dyr025 CrossRefGoogle ScholarPubMed
Anstey, K. J., Eramudugolla, R., Chopra, S., Price, J., Wood, J. M., & Bondi, M. (2017). Assessment of driving safety in older adults with mild cognitive impairment. Journal of Alzheimer’s Disease, 57, 11971205. https://doi.org/10.3233/JAD-161209 CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 12931295. https://doi.org/10.1126/science.275.5304.1293 CrossRefGoogle ScholarPubMed
Belleville, S., Fouquet, C., Hudon, C., Hervé Tchala Vignon, Z., & Croteau, J. (2017). Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychology Review, 27, 328353. https://doi.org/10.1007/s11065-017-9361-5 CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289300.CrossRefGoogle Scholar
Benton, A. L., Hamsher, d. S. K., & Sivan, A. B. (1983). Multilingual aphasia examination (2nd ed.). Iowa City, IA: AJA Associates.Google Scholar
Brand, M., & Schiebener, J. (2013). Interactions of age and cognitive functions in predicting decision making under risky conditions over the life span. Journal of Clinical and Experimental Neuropsychology, 35, 923. https://doi.org/10.1080/13803395.2012.740000 CrossRefGoogle ScholarPubMed
Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., & Markowitsch, H. J. (2005). Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: Associations with executive functions. Neuropsychology, 19, 267277. https://doi.org/10.1037/0894-4105.19.3.267 CrossRefGoogle Scholar
Brand, M., Heinze, K., Labudda, K., & Markowitsch, H. J. (2008). The role of strategies in deciding advantageously in ambiguous and risky situations. Cognitive Processing, 9, 159173. https://doi.org/10.1007/s10339-008-0204-4 CrossRefGoogle ScholarPubMed
Brand, M., Labudda, K., & Markowitsch, H. J. (2006). Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Networks: The Official Journal of the International Neural Network Society, 19, 1266. https://doi.org/10.1016/j.neunet.2006.03.001 CrossRefGoogle ScholarPubMed
Brand, M., Laier, C., Pawlikowski, M., & Markowitsch, H. J. (2009). Decision making with and without feedback: The role of intelligence, strategies, executive functions, and cognitive styles. Journal of Clinical and Experimental Neuropsychology, 31, 984998. https://doi.org/10.1080/13803390902776860 CrossRefGoogle ScholarPubMed
Brand, M., Schiebener, J., Pertl, M.-T., & Delazer, M. (2014). Know the risk, take the win: How executive functions and probability processing influence advantageous decision making under risk conditions. Journal of Clinical and Experimental Neuropsychology, 36, 914929. https://doi.org/10.1080/13803395.2014.955783 CrossRefGoogle ScholarPubMed
Brandt, J., Aretouli, E., Neijstrom, E., Samek, J., Manning, K., Albert, M. S., & Bandeen-Roche, K. (2009). Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology, 23, 607618. https://doi.org/10.1037/a0015851 CrossRefGoogle ScholarPubMed
Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23, 201216. https://doi.org/10.1016/j.acn.2007.08.010 CrossRefGoogle ScholarPubMed
Correia, S., Ahern, D. C., Rabinowitz, A. R., Farrer, T. J., Watts, A. K. S., Salloway, S., Malloy, P. F., & Deoni, S. C. L. (2015). Lowering the floor on trail making test Part B: Psychometric evidence for a new scoring metric. Archives of Clinical Neuropsychology, 30, 643656. https://doi.org/10.1093/arclin/acv040 CrossRefGoogle ScholarPubMed
Crook, T. H., Feher, E. P., & Larrabee, G. J. (1992). Assessment of memory complaint in age-associated memory impairment: The MAC-Q. International Psychogeriatrics, 4, 165176. https://doi.org/10.1017/S1041610292000991 CrossRefGoogle ScholarPubMed
Csukly, G., Sirály, E., Fodor, Z., Horváth, A., Salacz, P., Hidasi, Z., Csibri, É., Rudas, G., & Szabó, Á. (2016). The differentiation of amnestic type MCI from the non-amnestic types by structural MRI. Frontiers in Aging Neuroscience, 8, 5252. https://doi.org/10.3389/fnagi.2016.00052 CrossRefGoogle ScholarPubMed
Darmanthé, N., Tabatabaei-Jafari, H., & Cherbuin, N. (2021). Combination of plasma neurofilament light chain and mini-mental state examination score predicts progression from mild cognitive impairment to Alzheimer’s disease within 5 years. Journal of Alzheimer’s Disease, 114. https://doi.org/10.3233/JAD-210092 Google ScholarPubMed
Delazer, M., Sinz, H., Zamarian, L., & Benke, T. (2007). Decision-making with explicit and stable rules in mild Alzheimer’s disease. Neuropsychologia, 45, 16321641. https://doi.org/10.1016/j.neuropsychologia.2007.01.006 CrossRefGoogle ScholarPubMed
Delis, D. C., Massman, P. J., Kaplan, E., McKee, R., Kramer, J. H., & Gettman, D. (1991). Alternate form of the California verbal learning test: Development and reliability. Clinical Neuropsychologist, 5, 154162. https://doi.org/10.1080/13854049108403299 CrossRefGoogle Scholar
Denburg, N. L., Cole, C. A., Hernandez, M., Yamada, T. H., Tranel, D., Bechara, A., & Wallace, R. B. (2007). The orbitofrontal cortex, real-world decision making, and normal aging. Annals of the New York Academy of Sciences, 1121, 480498. https://doi.org/10.1196/annals.1401.031 CrossRefGoogle ScholarPubMed
Eramudugolla, R., Mortby, M. E., Sachdev, P., Meslin, C., Kumar, R., & Anstey, K. J. (2017). Evaluation of a research diagnostic algorithm for DSM-5 neurocognitive disorders in a population-based cohort of older adults. Alzheimer’s Research & Therapy, 9, 15. https://doi.org/10.1186/s13195-017-0246-x CrossRefGoogle Scholar
Euteneuer, F., Schaefer, F., Stuermer, R., Boucsein, W., Timmermann, L., Barbe, M. T., Ebersbach, G., Otto, J., Kessler, J., & Kalbe, E. (2009). Dissociation of decision-making under ambiguity and decision-making under risk in patients with Parkinson’s disease: a neuropsychological and psychophysiological study. Neuropsychologia, 47, 2882. https://doi.org/10.1016/j.neuropsychologia.2009.06.014 CrossRefGoogle ScholarPubMed
Fernandes, C., Macedo, I., Barbosa, F., & Marques-Teixeira, J. (2021). Economic decision-making in the continuum between healthy aging and Alzheimer’s disease: A systematic review of 20 years of research. Neuroscience and Biobehavioral Reviews, 131, 12431263. https://doi.org/10.1016/j.neubiorev.2021.10.030 CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. https://doi.org/10.1016/0022-3956(75)90026-6 CrossRefGoogle ScholarPubMed
Gathmann, B., Brand, M., & Schiebener, J. (2017). One executive function never comes alone: monitoring and its relation to working memory, reasoning, and different executive functions. Cognitive Processing, 18, 1329. https://doi.org/10.1007/s10339-016-0773-6 CrossRefGoogle ScholarPubMed
Grambaite, R., Selnes, P., Reinvang, I., Aarsland, D., Hessen, E., Gjerstad, L., & Fladby, T. (2011). Executive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tracts. Journal of Alzheimers Disease, 27, 453462. https://doi.org/10.3233/jad-2011-110290 CrossRefGoogle ScholarPubMed
Griffith, H. R., Belue, K., Sicola, A., Krzywanski, S., Zamrini, E., Harrell, L., & Marson, D. C. (2003). Impaired financial abilities in mild cognitive impairment: A direct assessment approach. Neurology, 60, 449457. https://doi.org/10.1212/wnl.60.3.449 CrossRefGoogle ScholarPubMed
Griffith, H. R., Okonkwo, O. C., den Hollander, J. A., Belue, K., Copeland, J., Harrell, L. E., Brockington, J. C., Clark, D. G., & Marson, D. C. (2010). Brain metabolic correlates of decision making in amnestic mild cognitive impairment. Aging Neuropsychology and Cognition, 17, 492504. https://doi.org/10.1080/13825581003646135 CrossRefGoogle ScholarPubMed
Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, J. (2004). Revised comprehensive norms for an expanded Halstead Reitan battery: Demographically adjusted neuropsychological norms for African Americans and Caucasian adults. Lutz, FL: Psychological Assessment Resources.Google Scholar
Jacus, J. P., Fau, B. S., Raffard, S., & Gély-Nargeot, M. C. (2013). Decision-making and apathy in early stage of Alzheimer’s disease and in mild cognitive impairment. [Prise de décision et apathie dans la maladie d’Alzheimer débutante et le Trouble léger de la cognition.]. Geriatrie Et Psychologie Neuropsychiatrie De Vieillissement, 11, 215223. https://doi.org/10.1684/pnv.2013.0406 Google ScholarPubMed
Jorm, A. F. (1994). A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): development and cross-validation. Psychological Medicine, 24, 145153. https://doi.org/10.1017/S003329170002691X CrossRefGoogle Scholar
Jung, Y. H., Park, S., Jang, H., Cho, S. H., Kim, S. J., Kim, J. P., Kim, S. T., Na, D. L., Seo, S. W., & Kim, H. J. (2020). Frontal-executive dysfunction affects dementia conversion in patients with amnestic mild cognitive impairment. Scientific Reports, 10, 772772. https://doi.org/10.1038/s41598-020-57525-6 CrossRefGoogle ScholarPubMed
Klekociuk, S. Z., & Summers, M. J. (2014). Exploring the validity of mild cognitive impairment (MCI) subtypes: Multiple-domain amnestic MCI is the only identifiable subtype at longitudinal follow-up. Journal of Clinical and Experimental Neuropsychology, 36, 290301. https://doi.org/10.1080/13803395.2014.890699 CrossRefGoogle ScholarPubMed
Liebherr, M., Schiebener, J., Averbeck, H., & Brand, M. (2017). Decision making under ambiguity and objective risk in higher age: A review on cognitive and emotional contributions. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02128 CrossRefGoogle ScholarPubMed
Martin, R. C., Gerstenecker, A., Triebel, K. L., Falola, M., McPherson, T., Cutter, G., & Marson, D. C. (2019). Declining financial capacity in mild cognitive impairment: A six-year longitudinal study. Archives of Clinical Neuropsychology, 34, 152161. https://doi.org/10.1093/arclin/acy030 CrossRefGoogle ScholarPubMed
Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119, 252265. https://doi.org/10.1111/j.1600-0447.2008.01326.x CrossRefGoogle ScholarPubMed
Mueller, S. M., Arias, M. G., Vazquez, G. M., Schiebener, J., Brand, M., & Wegmann, E. (2019). Decision support in patients with mild Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 41, 484496. https://doi.org/10.1080/13803395.2019.1585517 CrossRefGoogle ScholarPubMed
Okonkwo, O. C., Griffith, H. R., Copeland, J. N., Belue, K., Lanza, S., Zamrini, E. Y., Harrell, L. E., Brockington, J. C., Clark, D., Raman, R., & Marson, D. C. (2008). Medical decision-making capacity in mild cognitive impairment A 3-year longitudinal study. Neurology, 71, 14741480. https://doi.org/10.1212/01.wnl.0000334301.32358.48 CrossRefGoogle ScholarPubMed
Oosterman, J. M., Wijers, M., & Kessels, R. P. C. (2013). Planning or something else? Examining neuropsychological predictors of zoo map performance. Applied Neuropsychology: Adult, 20, 103109. https://doi.org/10.1080/09084282.2012.670150 CrossRefGoogle ScholarPubMed
Pereiro, A. X., Juncos-Rabadan, O., & Facal, D. (2014). Attentional control in amnestic MCI subtypes: Insights from a Simon task. Neuropsychology, 28, 261272. https://doi.org/10.1037/neu0000047 CrossRefGoogle ScholarPubMed
Pertl, M. T., Benke, T., Zamarian, L., & Delazer, M. (2015). Decision making and ratio processing in patients with mild cognitive impairment. Journal of Alzheimers Disease, 48, 765779. https://doi.org/10.3233/jad-150291 CrossRefGoogle ScholarPubMed
Pertl, M. T., Benke, T., Zamarian, L., & Delazer, M. (2017). Effects of healthy aging and mild cognitive impairment on a real-life decision-making task. Journal of Alzheimers Disease, 58, 10771087. https://doi.org/10.3233/jad-170119 CrossRefGoogle ScholarPubMed
Pertl, M. T., Zamarian, L., & Delazer, M. (2017). Reasoning and mathematical skills contribute to normatively superior decision making under risk: evidence from the game of dice task. Cognitive Processing, 18, 249260. https://doi.org/10.1007/s10339-017-0813-x CrossRefGoogle ScholarPubMed
Reinvang, I., Grambaite, R., & Espeseth, T. (2012). Executive dysfunction in MCI: Subtype or early symptom. Int J Alzheimers Dis, 2012, 936272936278. https://doi.org/10.1155/2012/936272 Google ScholarPubMed
Reitan, R. M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. The Clinical Neuropsychologist, 9, 5056. https://doi.org/10.1080/13854049508402057 CrossRefGoogle Scholar
Schiebener, J., & Brand, M. (2015a). Decision making under objective risk conditions-a review of cognitive and emotional correlates, strategies, feedback processing, and external influences. Neuropsychology Review, 25, 171198. https://doi.org/10.1007/s11065-015-9285-x CrossRefGoogle ScholarPubMed
Schiebener, J., & Brand, M. (2015b). Self-reported strategies in decisions under risk: role of feedback, reasoning abilities, executive functions, short-term-memory, and working memory. Cognitive Processing, 16, 401416. https://doi.org/10.1007/s10339-015-0665-1 CrossRefGoogle ScholarPubMed
Schiebener, J., Wegmann, E., Gathmann, B., Laier, C., Pawlikowski, M., & Brand, M. (2014). Among three different executive functions, general executive control ability is a key predictor of decision making under objective risk. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01386 CrossRefGoogle ScholarPubMed
Schiebener, J., Zamarian, L., Delazer, M., & Brand, M. (2011). Executive functions, categorization of probabilities, and learning from feedback: What does really matter for decision making under explicit risk conditions? Journal of Clinical and Experimental Neuropsychology, 33, 10251039. https://doi.org/10.1080/13803395.2011.595702 CrossRefGoogle ScholarPubMed
Sinclair, C., Eramudugolla, R., Brady, B., Cherbuin, N., & Anstey, K. J. (2021). The role of cognition and reinforcement sensitivity in older adult decision-making under explicit risk conditions. Journal of Clinical and Experimental Neuropsychology (1744-411X (Electronic)). https://doi.org/10.1080/13803395.2021.1909709 CrossRefGoogle ScholarPubMed
Smith, A. (1982). Symbol Digit Modalities Test (SDMT) Manual. Los Angeles: Western Psychological Services.Google Scholar
Spreen, O., & Strauss, E. (1998). Compendium of neuropsychological tests: administration, norms and commentary. New York: Oxford University Press.Google Scholar
Starcke, K., Pawlikowski, M., Wolf, O., Altstotter-Gleich, C., & Brand, M. (2011). Decision-making under risk conditions is susceptible to interference by a secondary executive task. Cognitive Processing, 12, 177182. https://doi.org/10.1007/s10339-010-0387-3 CrossRefGoogle ScholarPubMed
Stroop, R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Sun, T., Xie, T., Wang, J., Zhang, L., Tian, Y., Wang, K., Yu, X., & Wang, H. (2020). Decision-making under ambiguity or risk in individuals with Alzheimer’s disease and mild cognitive impairment. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00218 CrossRefGoogle ScholarPubMed
Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions. Journal of Business, 59, S251S278. https://doi.org/10.1086/296365 CrossRefGoogle Scholar
von Elm, E., Altman, D. F., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & Vandenbroucke, J. P. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Annals of Internal Medicine, 147, 573577. https://doi.org/10.7326/0003-4819-147-8-200710160-00010 CrossRefGoogle ScholarPubMed
Wadley, V. G., Crowe, M., Marsiske, M., Cook, S. E., Unverzagt, F. W., Rosenberg, A. L., & Rexroth, D. (2007). Changes in everyday function in individuals with psychometrically defined mild cognitive impairment in the advanced cognitive training for independent and vital elderly study. Journal of the American Geriatrics Society, 55, 11921198. https://doi.org/10.1111/j.1532-5415.2007.01245.x CrossRefGoogle ScholarPubMed
Wechsler, D. (1945). A standardized memory scale for clinical use. The Journal of Psychology, 19, 8795. https://doi.org/10.1080/00223980.1945.9917223 CrossRefGoogle Scholar
Wechsler, D. (1997). Wechsler Memory Scale (WMS-III). Chicago: Psychological Corporation.Google Scholar
Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H., & Evans, J. J. (1996). Behavioural assessment of the dysexecutive syndrome. Edmunds England: Thames Valley Test Company.Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., & Petersen, R. C. (2004). Mild cognitive impairment - Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246. https://doi.org/10.1111/j.1365-2796.2004.01380.x CrossRefGoogle Scholar
Zamarian, L., Weiss, E. M., & Delazer, M. (2011). The impact of mild cognitive impairment on decision making in two gambling tasks. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 66 B, 2331. https://doi.org/10.1093/geronb/gbq067 CrossRefGoogle Scholar
Supplementary material: File

Sinclair et al. supplementary material

Sinclair et al. supplementary material

Download Sinclair et al. supplementary material(File)
File 20.6 KB