Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:05:52.679Z Has data issue: false hasContentIssue false

Higher HDL Cholesterol Is Associated with Better Cognitive Function: the Maine-Syracuse Study

Published online by Cambridge University Press:  10 November 2014

Georgina E. Crichton*
Affiliation:
Nutritional Physiology Research Centre, University of South Australia, Adelaide, Australia Centre de Recherche Public Santé, Centre d’Etudes en Santé, Grand-Duchy of Luxembourg
Merrill F. Elias
Affiliation:
Department of Psychology, University of Maine, Orono, Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
Adam Davey
Affiliation:
Department of Public Health, Temple University, Philadelphia, Pennsylvania
Kevin J. Sullivan
Affiliation:
Department of Psychology, University of Maine, Orono, Maine
Michael A. Robbins
Affiliation:
Department of Psychology, University of Maine, Orono, Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine
*
Correspondence and reprint requests to: Georgina Crichton, Centre d’Etudes en Santé, CRP-Santé, 1 A rue Thomas Edison, L-1445, Strassen, Luxembourg. E-mail: georgina.crichton@mymail.unisa.edu.au

Abstract

Few studies have examined associations between different subcategories of cholesterol and cognitive function. We examined relationships between total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride levels and cognitive performance in the Maine-Syracuse Longitudinal Study, a community-based study of cardiovascular risk factors. Cross-sectional analyses were undertaken on data from 540 participants, aged 60 to 98 years, free of dementia and stroke. TC, HDL, LDL, and triglyceride levels were obtained. Cognitive function was assessed using a thorough neuropsychological test battery, including domains of cognitive function indexed by multiple cognitive tests. The cognitive outcomes studied were as follows: Visual-Spatial Memory and Organization, Verbal and Working Memory, Scanning and Tracking, Abstract Reasoning, a Global Composite score, and the Mini-Mental State Examination (MMSE). Significant positive associations were observed between HDL-cholesterol and the Global Composite score, Working Memory, and the MMSE after adjustment for demographic and cardiovascular risk factors. Participants with desirable levels of HDL (≥60 mg/dL) had the highest scores on all cognitive outcomes. There were no significant associations observed between TC, LDL, or triglyceride concentrations and cognition. In older individuals, HDL-cholesterol was related to a composite of Working Memory tests and for general measures of cognitive ability when adjusted for cardiovascular variables. We speculate that persons over 60 are survivors and thus less likely to show cognitive deficit in relation to TC, LDL-cholesterol, and triglycerides. Longitudinal studies are needed to examine relations between specific cognitive abilities and the different subcategories of cholesterol. (JINS, 2014, 20, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstey, K.J., Lipnicki, D.M., & Low, L.F. (2008). Cholesterol as a risk factor for dementia and cognitive decline: A systematic review of prospective studies with meta-analysis. American Journal of Geriatric Psychiatry, 16, 343354. doi: 10.1097/JGP.0b013e31816b72d4 Google Scholar
Bender, A.R., & Raz, N. (2012). Age-related differences in episodic memory: A synergistic contribution of genetic and physiological vascular risk factors. Neuropsychology, 26, 442450. doi: 10.1037/a0028669 CrossRefGoogle ScholarPubMed
Benton, D. (1995). Do low cholesterol levels slow mental processing? Psychosomatic Medicine, 57, 5053.Google Scholar
Desmond, D.W., Tatemichi, T.K., Paik, M., & Stern, Y. (1993). Risk factors for cerebrovascular disease as correlates of cognitive function in a stroke-free cohort. Archives of Neurology, 50, 162166.Google Scholar
Dietschy, J.M., & Turley, S.D. (2004). Cholesterol metabolism in the central nervous system during early development and in the mature animal. Journal of Lipid Research, 45, 13751397. doi: 10.1194/jlr.r400004 Google Scholar
Dore, G.A., Elias, M.F., Robbins, M.A., Budge, M.M., & Elias, P.K. (2008). Relation between central adiposity and cognitive function in the Maine-Syracuse Study: Attenuation by physical activity. Annals of Behavioral Medicine, 35, 341350. doi: 10.1007/s12160-008-9038-7 CrossRefGoogle ScholarPubMed
Elias, M.F., Goodell, A.L., & Dore, G.A. (2012). Hypertension and cognitive functioning: A perspective in historical context. Hypertension, 60, 260268. doi: 10.1161/HYPERTENSIONAHA.111.186429 Google Scholar
Elias, M.F., Robbins, M.A., Budge, M.M., Abhayaratna, W.P., Dore, G.A., & Elias, P.K. (2009). Arterial pulse wave velocity and cognition with advancing age. Hypertension, 53, 668673. doi: HYPERTENSIONAHA.108.126342 [pii] 10.1161/HYPERTENSIONAHA.108.126342 Google Scholar
Elias, M.F., Robbins, M.A., Budge, M.M., Elias, P.K., Brennan, S.L., Johnston, C., &Bates, C.J. (2006). Homocysteine, folate, and vitamins B6 and B12 blood levels in relation to cognitive performance: The Maine-Syracuse study. Psychosomatic Medicine, 68, 547554. doi: 68/4/547 [pii]10.1097/01.psy.0000221380.92521.51 Google Scholar
Elias, P.K., Elias, M.F., D’Agostino, R.B., Sullivan, L.M., & Wolf, P.A. (2005). Serum cholesterol and cognitive performance in the Framingham Heart Study. Psychosomatic Medicine, 67, 2430. doi: 67/1/24 [pii] 10.1097/01.psy.0000151745.67285.c2 Google Scholar
Elsoe, S., Ahnstrom, J., Christoffersen, C., Hoofnagle, A.N., Plomgaard, P., Heinecke, J.W., &Nielsen, L.B. (2012). Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis, 221, 9197. doi: 10.1016/j.atherosclerosis.2011.11.031 Google Scholar
Felix-Redondo, F.J., Grau, M., & Fernandez-Berges, D. (2013). Cholesterol and cardiovascular disease in the elderly. Facts and gaps. Aging and Disease, 4, 154169.Google ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi: 0022-3956(75)90026-6 [pii] Google Scholar
Henderson, V.W., Guthrie, J.R., & Dennerstein, L. (2003). Serum lipids and memory in a population based cohort of middle age women. Journal of Neurology Neurosurgery, and Psychiatry, 74, 15301535. doi: 10.1136/jnnp.74.11.1530 Google Scholar
Hillbrand, M., & Spitz, R.T., (Eds.). (1997). Lipids, health, and behavior. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Kalmijn, S., Feskens, E.J., Launer, L.J., & Kromhout, D. (1996). Cerebrovascular disease, the apolipoprotein e4 allele, and cognitive decline in a community-based study of elderly men. Stroke, 27, 22302235.Google Scholar
Kalmijn, S., Feskens, E.J., Launer, L.J., & Kromhout, D. (1997). Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. American Journal of Epidemiology, 145, 3341.Google Scholar
Karlamangla, A.S., Singer, B.H., Reuben, D.B., & Seeman, T.E. (2004). Increases in serum non-high-density lipoprotein cholesterol may be beneficial in some high-functioning older adults: MacArthur studies of successful aging. Journal of the American Geriatrics Society, 52, 487494. doi: 10.1111/j.1532-5415.2004.52152.x CrossRefGoogle ScholarPubMed
Koudinov, A.R., & Koudinova, N.V. (2001). Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB Journal, 15, 18581860.Google Scholar
Kroke, A., Klipstein-Grobusch, K., Voss, S., Moseneder, J., Thielecke, F., Noack, R., & Boeing, H. (1999). Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: Comparison of energy, protein, and macronutuient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. American Journal of Clinical Nutrition, 70, 439447.Google Scholar
Lezak, M.D., Howieson, D.B., & Loring, D.W. (2004). Neuropsychological assessment (4th ed.). New York, NY: Oxford University Press.Google Scholar
Liu, F., Pardo, L.M., Schuur, M., Sanchez-Juan, P., Isaacs, A., Sleegers, K., & van Duijn, C.M. (2010). The apolipoprotein E gene and its age-specific effects on cognitive function. Neurobiology of Aging, 31, 18311833. doi: 10.1016/j.neurobiolaging.2008.09.015 CrossRefGoogle ScholarPubMed
Liu, J., Zeng, F.-F., Liu, Z.-M., Zhang, C.-X., Ling, W.-h., & Chen, Y.-M. (2013). Effects of blood triglycerides on cardiovascular and all-cause mortality: A systematic review and meta-analysis of 61 prospective studies. Lipids in Health and Disease, 12, 159. doi: 10.1186/1476-511x-12-159 Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939944.CrossRefGoogle ScholarPubMed
Mielke, M.M., Xue, Q.L., Zhou, J., Chaves, P.H., Fried, L.P., & Carlson, M.C. (2008). Baseline serum cholesterol is selectively associated with motor speed and not rates of cognitive decline: The Women's Health and Aging Study II. Journals of Gerontology . Series A: Biological Sciences and Medical Sciences, 63, 619624.Google Scholar
Muldoon, M.F., & Conklin, S.M. (2014). Effects of cholesterol and n-3 fatty acids on cognitive functioning, decline and dementia. In S. Waldstein & M.F. Elias (Eds.), Neuropsychology of cardiovascular disease (2nd ed.). New York: Taylor and Francis.Google Scholar
Muldoon, M.F., Ryan, C.M., Matthews, K.A., & Manuck, S.B. (1997). Serum cholesterol and intellectual performance. Psychosomatic Medicine, 59, 382387.Google Scholar
Nofer, J.R., Kehrel, B., Fobker, M., Levkau, B., Assmann, G., & von Eckardstein, A. (2002). HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atherosclerosis, 161, 116. doi: 10.1016/s0021-9150(01)00651-7 Google Scholar
Notkola, I.L., Sulkava, R., Pekkanen, J., Erkinjuntti, T., Ehnholm, C., Kivinen, P., &Nissinen, A. (1998). Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer's disease. Neuroepidemiology, 17, 1420.CrossRefGoogle ScholarPubMed
Ortega, R.M., Requejo, A.M., Andres, P., Lopez-Sobaler, A.M., Quintas, M.E., Redondo, M.R., &Rivas, T. (1997). Dietary intake and cognitive function in a group of elderly people. American Journal of Clinical Nutrition, 66, 803809.Google Scholar
Rabbitt, P.M.A. (1997). Methodology of frontal and executive function. East Sussex: Psychology Press.Google Scholar
Radloff, L.S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Reitz, C., Luchsinger, J., Tang, M.X., Manly, J., & Mayeux, R. (2005). Impact of plasma lipids and time on memory performance in healthy elderly without dementia. Neurology, 64, 13781383.Google Scholar
Reynolds, C.A., Gatz, M., Prince, J.A., Berg, S., & Pedersen, N.L. (2010). Serum lipid levels and cognitive change in late life. Journal of the American Geriatrics Society, 58, 501509. doi: 10.1111/j.1532-5415.2010.02739.x Google Scholar
Robbins, M.A., Elias, M.F., Elias, P.K., & Budge, M.M. (2005). Blood pressure and cognitive function in an African-American and a Caucasian-American sample: The Maine-Syracuse Study. Psychosomatic Medicine, 67, 707714. doi: 67/5/707 [pii] 10.1097/01.psy.0000171164.50990.80 Google Scholar
Romas, S.N., Tang, M.X., Berglund, L., & Mayeux, R. (1999). APOE genotype, plasma lipids, lipoproteins, and AD in community elderly. Neurology, 53, 517521.Google Scholar
Schreurs, B.G. (2010). The effects of cholesterol on learning and memory. Neuroscience and Biobehavioral Reviews, 34, 13661379. doi: 10.1016/j.neubiorev.2010.04.010 Google Scholar
Silbernagel, G., Schoettker, B., Appelbaum, S., Scharnagl, H., Kleber, M.E., Grammer, T.B., &Maerz, W. (2013). High-density lipoprotein cholesterol, coronary artery disease, and cardiovascular mortality. European Heart Journal, 34, 35633571. doi: 10.1093/eurheartj/eht343 Google Scholar
Singh-Manoux, A., Gimeno, D., Kivimaki, M., Brunner, E., & Marmot, M.G. (2008). Low HDL cholesterol is a risk factor for deficit and decline in memory in midlife – The Whitehall II study. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 15561562. doi: 10.1161/atvbaha.108.163998 CrossRefGoogle ScholarPubMed
Solomon, A., Kareholt, I., Ngandu, T., Winblad, B., Nissinen, A., Tuomilehto, J., &Kivipelto, M. (2007). Serum cholesterol changes after midlife and late-life cognition: Twenty-one-year follow-up study. Neurology, 68, 751756. doi: 10.1212/01.wnl.0000256368.57375.b7 CrossRefGoogle ScholarPubMed
Swan, G.E., Larue, A., Carmelli, D., Reed, T.E., & Fabsitz, R.R. (1992). Decline in cognitive performance in aging twins – heritability and biobehavioral predictors from the National Heart Lung and Blood Institute Twin Study. Archives of Neurology, 49, 476481.CrossRefGoogle ScholarPubMed
Tehrani, D.M., Gardin, J.M., Yanez, D., Hirsch, C.H., Lloyd-Jones, D.M., Stein, P.K., & Wong, N.D. (2013). Impact of inflammatory biomarkers on relation of high density lipoprotein-cholesterol with incident coronary heart disease: Cardiovascular Health Study. Atherosclerosis, 231, 246251. doi: 10.1016/j.atherosclerosis.2013.08.036 CrossRefGoogle ScholarPubMed
U.S. Department of Health and Human Services. (2001). ATP III Guidelines At-A-Glance Quick Desk Reference. Retrieved from https://www.nhlbi.nih.gov/guidelines/cholesterol/atglance.pdf Google Scholar
Vaisar, T., Pennathur, S., Green, P.S., Gharib, S.A., Hoofnagle, A.N., Cheung, M.C., &Heinecke, J.W. (2007). Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. Journal of Clinical Investigation, 117, 746756. doi: 10.1172/jc126206 Google Scholar
van den Kommer, T.N., Dik, M.G., Comijs, H.C., Jonker, C., & Deeg, D.J. (2012). Role of lipoproteins and inflammation in cognitive decline: Do they interact? Neurobiology of Aging, 33, 196 e191e112. doi: 10.1016/j.neurobiolaging.2010.05.024 Google Scholar
van der Laan, M.J., Dudoit, S., & Pollard, K.S. (2004). Multiple testing. Part II. Step-down procedures for control of the family-wise error rate. Statistical Applications in Genetics and Molecular Biology, 3, Article14 doi: 10.2202/1544-6115.1041 Google Scholar
van Vliet, P. (2012). Cholesterol and late-life cognitive decline. Journal of Alzheimer’s Disease, 30(Suppl 2), S147S162. doi: 10.3233/jad-2011-111028 Google Scholar
van Vliet, P., Westendorp, R.G., van Heemst, D., de Craen, A.J., & Oleksik, A.M. (2010). Cognitive decline precedes late-life longitudinal changes in vascular risk factors. Journal of Neurology Neurosurgery and Psychiatry, 81, 10281032. doi: 10.1136/jnnp.2009.182519 CrossRefGoogle ScholarPubMed
Wada, T., Matsubayashi, K., Okumiya, K., Kimura, S., Osaka, Y., Doi, Y., & Ozawa, T. (1997). Lower serum cholesterol level and later decline in cognitive function in older people living in the community, Japan. Journal of the American Geriatrics Society, 45, 14111412.CrossRefGoogle ScholarPubMed
Waldstein, S.R., & Elias, M.F. (Eds.). (2001). Neuropsychology of cardiovascular disease. Mahwah, NJ: Lawrence Erlbaum Associates.CrossRefGoogle Scholar
Waldstein, S.R., & Elias, M.F. (Eds.). (2014). Neuropsychology of cardiovascular disease (2nd ed.). New York: Taylor & Francis (in press).Google Scholar
Wolf, H., Hensel, A., Arendt, T., Kivipelto, M., Winblad, B., & Gertz, H.J. (2004). Serum lipids and hippocampal volume: The link to Alzheimer’s disease? Annals of Neurology, 56, 745748. doi: 10.1002/ana.20289 Google Scholar
Yaffe, K., Barrett-Connor, E., Lin, F., & Grady, D. (2002). Serum lipoprotein levels, statin use, and cognitive function in older women. Archives of Neurology, 59, 378384.Google Scholar
Yoshitake, T., Kiyohara, Y., Kato, I., Ohmura, T., Iwamoto, H., Nakayama, K., … et al. (1995). Incidence and risk factors of vascular dementia and Alzheimer's disease in a defined elderly Japanese population: The Hisayama Study. Neurology, 45, 11611168.Google Scholar
Zhang, J., Muldoon, M.F., & McKeown, R.E. (2004). Serum cholesterol concentrations are associated with visuomotor speed in men: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. American Journal of Clinical Nutrition, 80, 291298.CrossRefGoogle ScholarPubMed
Zimetbaum, P., Frishman, W.H., Ooi, W.L., Derman, M.P., Aronson, M., Gidez, L.I., & Eder, H.A. (1992). Plasma lipids and lipoproteins and the incidence of cardiovascular disease in the very elderly. The Bronx Aging Study. Arteriosclerosis and Thrombosis, 12, 416423.Google Scholar
Supplementary material: File

Crichton Supplementary Material

Table S1

Download Crichton Supplementary Material(File)
File 40.4 KB