Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:33:20.580Z Has data issue: false hasContentIssue false

Dissecting the Effects of Disease and Treatment on Impulsivity in Parkinson's Disease

Published online by Cambridge University Press:  19 October 2012

Alison C. Simioni*
Affiliation:
Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec
Alain Dagher
Affiliation:
Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec
Lesley K. Fellows
Affiliation:
Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec
*
Correspondence and reprint requests to: Alison C. Simioni, Montreal Neurological Institute, 3801 University Street, Room 276, Montreal, Quebec H3A 2B4. E-mail: alison.simioni@mail.mcgill.ca

Abstract

Converging evidence, including observations in patients with Parkinson's disease (PD), suggests that dopamine plays a role in impulsivity. This multi-faceted construct includes considerations of both time and risk; determining how these more specific processes are affected by PD and dopaminergic treatment can inform neurobiological models. We examined the effects of PD and its treatment on temporal discounting and risky decision-making in a cohort of 23 mild-moderate PD patients and 20 healthy participants. Patients completed the Balloon Analogue Risk Task and a temporal discounting paradigm both on and off their usual dopamine replacement therapy. PD patients did not differ from controls in their initial risk-taking on the Balloon Analogue Risk Task, but took progressively more risks across trials when on medication. A subset of patients and controls was tested again, 1.5–3 years later, to explore the effects of disease progression. On follow-up, baseline risk-taking diminished in patients, but the tendency to take increasing risks across trials persisted. Neither disease progression nor its treatment affected the temporal discounting rate. These findings suggest a different neural basis for temporal discounting and risk-taking, and demonstrate that risk-taking can be further decomposed into initial and trial-by-trial effects, with dopamine affecting only the latter. (JINS, 2012, 18, 1–10)

Type
Symposia
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainslie, G. (2001). Breakdown of will (1st ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Aklin, W.M., Lejuez, C.W., Zvolensky, M.J., Kahler, C.W., Gwadz, M. (2005). Evaluation of behavioral measures of risk taking propensity with inner city adolescents. Behaviour Research and Therapy, 43(2), 215228.CrossRefGoogle ScholarPubMed
Albin, R.L., Young, A.B., Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366375.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.CrossRefGoogle ScholarPubMed
Bickel, W.K., Marsch, L.A. (2001). Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction, 96(1), 7386. doi:10.1046/j.1360-0443.2001.961736.xCrossRefGoogle Scholar
Bishara, A.J., Pleskac, T.J., Fridberg, D.J., Yechiam, E., Lucas, J., Busemeyer, J.R., Stout, J.C. (2009). Similar processes despite divergent behavior in two commonly used measures of risky decision making. Journal of Behavioral Decision Making, 22(4), 435454. doi:10.1002/bdm.641CrossRefGoogle ScholarPubMed
Bornovalova, M.A., Cashman-Rolls, A., O'Donnell, J.M., Ettinger, K., Richards, J.B., deWit, H., Lejuez, C.W. (2009). Risk taking differences on a behavioral task as a function of potential reward/loss magnitude and individual differences in impulsivity and sensation seeking. Pharmacology Biochemistry and Behavior, 93(3), 258262. doi:10.1016/j.pbb.2008.10.023CrossRefGoogle ScholarPubMed
Brand, M., Labudda, K., Kalbe, E., Hilker, R., Emmans, D., Fuchs, G., Markowitsch, H.J. (2004). Decision-making impairments in patients with Parkinson's disease. Behavioural Neurology, 15(3-4), 7785.CrossRefGoogle ScholarPubMed
Bruck, A., Aalto, S., Nurmi, E., Vahlberg, T., Bergman, J., Rinne, J.O. (2006). Striatal subregional 6- F-18 fluoro-L-dopa uptake in early Parkinson's disease: A two-year follow-up study. Movement Disorders, 21(7), 958963. doi:10.1002/mds.20855CrossRefGoogle ScholarPubMed
Camille, N., Griffiths, C.A., Vo, K., Fellows, L.K., Kable, J.W. (2011). Ventromedial frontal lobe damage disrupts value maximization in humans. Journal of Neuroscience, 31(20), 75277532. doi:10.1523/jneurosci.6527-10.2011CrossRefGoogle ScholarPubMed
Cardinal, R.N., Winstanley, C.A., Robbins, T.W., Everitt, B.J. (2004). Limbic corticostriatal systems and delayed reinforcement. In R.E. Dahl & L.P. Spear (Eds.), Adolescent brain development: Vulnerabilities and opportunities (Vol. 1021, pp. 3350) New York: New York Acad Sciences.Google Scholar
Claassen, D.O., van den Wildenberg, W.P.M., Ridderinkhof, K.R., Jessup, C.K., Harrison, M.B., Wooten, G.F., Wylie, S.A. (2011). The risky business of dopamine agonists in Parkinson disease and impulse control disorders. Behavioral Neuroscience, 125(4), 492500. doi:10.1037/a0023795CrossRefGoogle ScholarPubMed
Coffey, S.F., Gudleski, G.D., Saladin, M.E., Brady, K.T. (2003). Impulsivity and rapid discounting of delayed hypothetical rewards in cocaine-dependent individuals. Experimental and Clinical Psychopharmacology, 11(1), 1825. doi:10.1037//1064-1297.11.1.18CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cools, R. (2006). Dopaminergic modulation of cognitive function- implications for L-DOPA treatment in Parkinson's disease. Neuroscience and Behavioral Reviews, 30, 123.CrossRefGoogle ScholarPubMed
Cools, R., Altamirano, L., D'Esposito, M. (2006). Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia, 44, 16631673.CrossRefGoogle ScholarPubMed
Crowley, M.J., Wu, J., Crutcher, C., Bailey, C.A., Lejuez, C.W., Mayes, L.C. (2009). Risk-taking and the feedback negativity response to loss among at-risk adolescents. Developmental Neuroscience, 31(1-2), 137148. doi:10.1159/000207501CrossRefGoogle ScholarPubMed
Dagher, A., Robbins, T.W. (2009). Personality, addiction, dopamine: Insights from Parkinson's disease. Neuron, 61(4), 502510. doi:10.1016/j.neuron.2009.01.031CrossRefGoogle ScholarPubMed
de Wit, H., Enggasser, J.L., Richards, J.B. (2002). Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology, 27(5), 813825. doi:Pii s0893-133x(02)00343-310.1016/s0893-133x(02)00343-3CrossRefGoogle ScholarPubMed
Driver-Dunckley, E., Samanta, J., Stacy, M. (2003). Pathological gambling associated with dopamine agonist therapy in Parkinson's disease. Neurology, 61(3), 422423.CrossRefGoogle ScholarPubMed
Dunn, B.D., Dalgleish, T., Lawrence, A.D. (2006). The somatic marker hypothesis: A critical evaluation. Neuroscience and Biobehavioral Reviews, 30(2), 239271. doi:10.1016/j.neubiorev.2005.07.001CrossRefGoogle ScholarPubMed
Euteneuer, F., Schaefer, F., Stuermer, R., Boucsein, W., Timmermann, L., Barbe, M.T., Kalbe, E. (2009). Dissociation of decision-making under ambiguity and decision-making under risk in patients with Parkinson's disease: A neuropsychological and psychophysiological study. Neuropsychologia, 47(13), 28822890. doi:10.1016/j.neuropsychologia.2009.06.014CrossRefGoogle ScholarPubMed
Evans, A.H., Lawrence, A.D., Potts, J., MacGregor, L., Katzenschlager, R., Shaw, K., Lees, A.J. (2006). Relationship between impulsive sensation seeking traits, smoking, alcohol and caffeine intake, and Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 77(3), 317321. doi:10.1136/jnnp.2005.065417CrossRefGoogle ScholarPubMed
Fahn, S., Elton, R. (1987). Unified Parkinson's Disease Rating Scale. In S. Fahn, C. Marsden, D. Calne, & M. Goldstein (Eds.), Recent developments in Parkinson's disease (pp. 153163) Florham Park, NJ: Macmillan.Google Scholar
Fecteau, S., Pascual-Leone, A., Zald, D.H., Liguori, P., Theoret, H., Boggio, P.S., Fregni, F. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. Journal of Neuroscience, 27(23), 62126218. doi:10.1523/jneurosci.0314-07.2007CrossRefGoogle ScholarPubMed
Fellows, L.K., Farah, M.J. (2005). Dissociable elements of human foresight: A role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia, 43(8), 12141221. doi:10.1016/j.neuropsychologia.2004.07.018CrossRefGoogle Scholar
Fellows, L.K., Farah, M.J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 26692674. doi:10.1093/cercor/bhl176CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-mental state – Practical method for grading cognitive state of patients for clinican. Journal of Psychiatric Research, 12(3), 189198. doi:10.1016/0022-3956(75)90026-6CrossRefGoogle Scholar
Frank, M.J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 5172.CrossRefGoogle ScholarPubMed
Frank, M.J., Samanta, J., Moustafa, A.A., Sherman, S.J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(5854), 13091312. doi:10.1126/science.1146157CrossRefGoogle ScholarPubMed
Frank, M.J., Seeberger, L.C., O'Reilly, R.C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 19401943. doi:10.1126/science.1102941CrossRefGoogle ScholarPubMed
Hamidovic, A., Kang, U.J., de Wit, H. (2008). Effects of low to moderate acute doses of pramipexole on impulsivity and cognition in healthy volunteers. Journal of Clinical Psychopharmacology, 28(1), 4551. doi:10.1097/jcp.0b013e3181602fabCrossRefGoogle ScholarPubMed
Henri-Bhargava, A., Simioni, A., Fellows, L.K. (2012). Ventromedial frontal lobe damage disrupts the accuracy, but not the speed, of value-based preference judgments. Neuropsychologia, 50(7), 15361542.CrossRefGoogle Scholar
Hoehn, M.M., Yahr, M.D. (1967). Parkinsonism onset, progression and mortality. Neurology, 17(5), 427442.CrossRefGoogle ScholarPubMed
Hopko, D.R., Lejuez, C.W., Daughters, S.B., Aklin, W.M., Osborne, A., Simmons, B.L., Strong, D.R. (2006). Construct validity of the balloon analogue risk task (BART): Relationship with MDMA use by inner-city drug users in residential treatment. Journal of Psychopathology and Behavioral Assessment, 28(2), 95101. doi:10.1007/s10862-006-7487-5CrossRefGoogle Scholar
Housden, C.R., O'Sullivan, S.S., Joyce, E.M., Lees, A.J., Roiser, J.P. (2010). Intact reward learning but elevated delay discounting in Parkinson's disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology, 35(11), 21552164. doi:10.1038/npp.2010.84CrossRefGoogle ScholarPubMed
Hunt, M.K., Hopko, D.R., Bare, R., Lejuez, C.W., Robinson, E.V. (2005). Construct validity of the Balloon Analog Risk Task (BART)–Associations with psychopathy and impulsivity. Assessment, 12(4), 416428. doi:10.1177/1073191105278740CrossRefGoogle ScholarPubMed
Jahanshahi, M., Wilkinson, L., Gahir, H., Dharminda, A., Lagnado, D.A. (2010). Medication impairs probabilistic classification learning in Parkinson's disease. Neuropsychologia, 48(4), 10961103. doi:10.1016/j.neuropsychologia.2009.12.010CrossRefGoogle ScholarPubMed
Kable, J.W., Glimcher, P.W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10(12), 16251633. doi:10.1038/nn2007CrossRefGoogle ScholarPubMed
Kirby, K.N. (2009). One-year temporal stability of delay-discount rates. Psychonomic Bulletin & Review, 16(3), 457462. doi:10.3758/pbr.16.3.457CrossRefGoogle ScholarPubMed
Kirby, K.N., Herrnstein, R.J. (1995). Preference reversals due to myopic discounting of delayed reward. Psychological Science, 6(2), 8389. doi:10.1111/j.1467-9280.1995.tb00311.xCrossRefGoogle Scholar
Kirby, K.N., Marakovic, N.N. (1996). Delay-discounting probabilistic rewards: Rates decrease as amounts increase. Psychonomic Bulletin & Review, 3(1), 100104. doi:10.3758/bf03210748CrossRefGoogle ScholarPubMed
Kirby, K.N., Petry, N.M. (2004). Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction, 99(4), 461471. doi:10.1111/j.1360-0443.2004.00669.xCrossRefGoogle ScholarPubMed
Kirby, K.N., Petry, N.M., Bickel, W.K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology. General, 128(1), 7887. doi:10.1037/0096-3445.128.1.78CrossRefGoogle ScholarPubMed
Kish, S.J., Shannak, K., Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease – Pathophysiologic and clinical implications. New England Journal of Medicine, 318(14), 876880.CrossRefGoogle ScholarPubMed
Kobayakawa, M., Koyama, S., Mimura, M., Kawamura, M. (2008). Decision making in Parkinson's disease: Analysis of behavioral and physiological patterns in the Iowa Gambling Task. Movement Disorders, 23(4), 547552. doi:10.1002/mds.21865CrossRefGoogle ScholarPubMed
Lejuez, C.W., Aklin, W.M., Jones, H.A., Richards, J.B., Strong, D.R., Kahler, C.W., Read, J.P. (2003). The Balloon Analogue Risk Task (BART) differentiates smokers and nonsmokers. Experimental and Clinical Psychopharmacology, 11(1), 2633. doi:10.1037/1064-1297.11.1.26CrossRefGoogle ScholarPubMed
Lejuez, C.W., Read, J.P., Kahler, C.W., Richards, J.B., Ramsey, S.E., Stuart, G.L., Brown, R.A. (2002). Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). Journal of Experimental Psychology-Applied, 8(2), 7584. doi:10.1037//1076-898x.8.2.75CrossRefGoogle ScholarPubMed
Lejuez, C.W., Simmons, B.L., Aklin, W.M., Daughters, S.B., Dvir, S. (2004). Risk-taking propensity and risky sexual behavior of individuals in residential substance use treatment. Addictive Behaviors, 29(8), 16431647. doi:10.1016/j.adbeh.2004.02.035CrossRefGoogle ScholarPubMed
Lesieur, H.R., Blume, S.B. (1987). The South Oaks gambling screen (SOGS)–A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144(9), 11841188.Google ScholarPubMed
Madden, G.J., Begotka, A.M., Raiff, B.R., Kastern, L.L. (2003). Delay discounting of real and hypothetical rewards. Experimental and Clinical Psychopharmacology, 11(2), 139145. doi:10.1037/1064-1297.11.2.139CrossRefGoogle ScholarPubMed
McClure, S.M., Ericson, K.M., Laibson, D.I., Loewenstein, G., Cohen, J.D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27(21), 57965804. doi:10.1523/jneurosci.4246-06.2007CrossRefGoogle ScholarPubMed
McClure, S.M., Laibson, D.I., Loewenstein, G., Cohen, J.D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503507. doi:10.1126/science.1100907CrossRefGoogle ScholarPubMed
Menza, M.A., Golbe, L.I., Cody, R.A., Forman, N.E. (1993). Dopamine-related personality traits in Parkinson's disease. Neurology, 43(3), 505508.CrossRefGoogle ScholarPubMed
Milenkova, M., Mohammadi, B., Kollewe, K., Schrader, C., Fellbrich, A., Wittfoth, M., Munte, T.F. (2011). Intertemporal choice in Parkinson's disease. Movement Disorders, 26(11), 20042010. doi:10.1002/mds.23756CrossRefGoogle ScholarPubMed
Mimura, M., Oeda, R., Kawamura, M. (2006). Impaired decision-making in Parkinson's disease. Parkinsonism & Related Disorders, 12(3), 169175. doi:10.1016/j.parkreldis.2005.12.003CrossRefGoogle ScholarPubMed
Morris, S.B., DeShon, R.P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7(1), 105125. doi:10.1037//1082-989x.7.1.105CrossRefGoogle ScholarPubMed
Nasreddine, Z.S., Phillips, N.A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Chertkow, H. (2005). The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. doi:10.1111/j.1532-5415.2005.53221.xCrossRefGoogle Scholar
Ondo, W.G., Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 2832.CrossRefGoogle ScholarPubMed
Pagonabarraga, J., Garcia-Sanchez, C., Llebaria, G., Pascual-Sedano, B., Gironell, A., Kulisevsky, J. (2007). Controlled study of decision-making and cognitive impairment in Parkinson's disease. Movement Disorders, 22(10), 14301435. doi:10.1002/mds.21457CrossRefGoogle ScholarPubMed
Pahwa, R., Wilkinson, S., Smith, D., Lyons, K., Miyawaki, E., Koller, W.C. (1997). High-frequency stimulation of the globus pallidus for the treatment of Parkinson's disease. Neurology, 49(1), 249253.CrossRefGoogle ScholarPubMed
Perretta, J.G., Pari, G., Beninger, R.J. (2005). Effects of Parkinson disease on two putative nondeclarative learning tasks – Probabilistic classification and gambling. Cognitive and Behavioral Neurology, 18(4), 185192.CrossRefGoogle Scholar
Peters, J., Buchel, C. (2009). Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. Journal of Neuroscience, 29(50), 1572715734. doi:10.1523/jneurosci.3489-09.2009CrossRefGoogle ScholarPubMed
Petry, N.M. (2002). Discounting of delayed rewards in substance abusers: Relationship to antisocial personality disorder. Psychopharmacology, 162(4), 425432. doi:10.1007/s00213-002-1115-1CrossRefGoogle ScholarPubMed
Pietras, C.J., Cherek, D.R., Lane, S.D., Tcheremissine, O.V., Steinberg, J.L. (2003). Effects of methylphenidate on impulsive choice in adult humans. Psychopharmacology, 170(4), 390398. doi:10.1007/s00213-003-1547-2CrossRefGoogle ScholarPubMed
Pine, A., Seymour, B., Roiser, J.P., Bossaerts, P., Friston, K.J., Curran, H.V., Dolan, R.J. (2009). Encoding of marginal utility across time in the human brain. Journal of Neuroscience, 29(30), 95759581. doi:10.1523/jneurosci.1126-09.2009CrossRefGoogle ScholarPubMed
Ragonese, P., Salemi, G., Morgante, L., Aridon, P., Epifanio, A., Buffa, D., Savettieri, G. (2003). A case-control study on cigarette, alcohol, and coffee consumption preceding Parkinson's disease. Neuroepidemiology, 22(5), 297304. doi:10.1159/000071193CrossRefGoogle ScholarPubMed
Reynolds, B. (2006). A review of delay-discounting research with humans: Relations to drug use and gambling. Behavioural Pharmacology, 17(8), 651667. doi:10.1097/FBP.0b013e3280115f99CrossRefGoogle Scholar
Seedat, S., Kesler, S., Niehaus, D.J.H., Stein, D.J. (2000). Pathological gambling behaviour: Emergence secondary to treatment of Parkinson's disease with dopaminergic agents. Depression and Anxiety, 11(4), 185186.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Shohamy, D., Myers, C.E., Kalanithi, J., Gluck, M.A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32(2), 219236. doi:10.1016/j.neubiorev.2007.07.008CrossRefGoogle ScholarPubMed
Stout, J.C., Rodawalt, W.C., Siemers, E.R. (2001). Risky decision making in Huntington's disease. Journal of the International Neuropsychological Society, 7(1), 92101.CrossRefGoogle ScholarPubMed
Thiel, A., Hilker, R., Kessler, J., Habedank, B., Herholz, K., Heiss, W.D. (2003). Activation of basal ganglia loops in idiopathic Parkinson's disease: A PET study. Journal of Neural Transmission, 110(11), 12891301. doi:10.1007/s00702-003-0041-7CrossRefGoogle ScholarPubMed
Tomer, R., Aharon-Peretz, J. (2004). Novelty seeking and harm avoidance in Parkinson's disease: Effects of asymmetric dopamine deficiency. Journal of Neurology, Neurosurgery, and Psychiatry, 75(7), 972975. doi:10.1136/jnnp.2003.024885CrossRefGoogle ScholarPubMed
van Eimeren, T., Ballanger, B., Pellecchia, G., Miyasaki, J.M., Lang, A.E., Strafella, A.P. (2009). Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: A trigger for pathological gambling in Parkinson's disease? Neuropsychopharmacology, 34(13), 27582766. doi:10.1038/npp.2009.124CrossRefGoogle ScholarPubMed
van Eimeren, T., Monchi, O., Ballanger, B., Strafella, A.P. (2009). Dysfunction of the default mode network in Parkinson disease: A functional magnetic resonance imaging study. Archives of Neurology, 66(7), 877883.CrossRefGoogle ScholarPubMed
van Wouwe, N.C., Ridderinkhof, K.R., Band, G.P.H., van den Wildenberg, W.P.M., Wylie, S.A. (2012). Dose dependent dopaminergic modulation of reward-based learning in Parkinson's disease. Neuropsychologia, 50(5), 583591.CrossRefGoogle ScholarPubMed
Voon, V., Fox, S.H. (2007). Medication-related impulse control and repetitive behaviors in Parkinson Disease. Archives of Neurology, 64(8), 10891096.CrossRefGoogle ScholarPubMed
Voon, V., Reynolds, B., Brezing, C., Gallea, C., Skaljic, M., Ekanayake, V., Hallett, M. (2010). Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology, 207(4), 645659. doi:10.1007/s00213-009-1697-yCrossRefGoogle ScholarPubMed
Vuchinich, R.E., Simpson, C.A. (1998). Hyperbolic temporal discounting in social drinkers and problem drinkers. Experimental and Clinical Psychopharmacology, 6(3), 292305. doi:10.1037//1064-1297.6.3.292CrossRefGoogle ScholarPubMed
Weber, B.J., Huettel, S.A. (2008). The neural substrates of probabilistic and intertemporal decision making. Brain Research, 1234, 104115. doi:10.1016/j.brainres.2008.07.105CrossRefGoogle ScholarPubMed
Weintraub, D., Koester, J., Potenza, M.N., Siderowf, A.D., Stacy, M., Voon, V., Lang, A.E. (2010). Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Archives of Neurology, 67(5), 589595.CrossRefGoogle ScholarPubMed
Winstanley, C.A., Eagle, D.M., Robbins, T.W. (2006). Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, 26(4), 379395. doi:10.1016/j.cpr.2006.01.001CrossRefGoogle ScholarPubMed
Xu, L., Liang, Z.-Y., Wang, K., Li, S., Jiang, T. (2009). Neural mechanism of intertemporal choice: From discounting future gains to future losses. Brain Research, 1261, 6574. doi:10.1016/j.brainres.2008.12.061CrossRefGoogle ScholarPubMed