Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-10-31T14:05:32.480Z Has data issue: false hasContentIssue false

Development and validation of the TabCAT-EXAMINER: A tablet-based executive functioning battery for research and clinical trials

Published online by Cambridge University Press:  30 October 2025

Mark Sanderson-Cimino*
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Katherine L. Possin
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
Dan M. Mungas
Affiliation:
Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
Emily W. Paolillo
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Breton M. Asken
Affiliation:
Florida Alzheimer’s Disease Research Center, Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
Elena Tsoy
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Sabrina Jarrott
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Yann Cobigo
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Rowan Saloner
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Kaitlin B. Casaletto
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Ciaran Considine
Affiliation:
Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
Julie A. Fields
Affiliation:
Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
Joie Molden
Affiliation:
Department of Neurosurgery, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
Katya Rascovsky
Affiliation:
Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
Sandra Weintraub
Affiliation:
Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, Chicago, IL, USA
Bonnie Wong
Affiliation:
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
Hilary W. Heuer
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Leah K. Forsberg
Affiliation:
Department of Neurology, Mayo Clinic, Rochester, MN, USA
Julio C. Rojas
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Lawren VandeVrede
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Peter Ljubenkov
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Gil D. Rabinovici
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Maria Luisa Gorno-Tempini
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
William W. Seeley
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Bruce L. Miller
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
Bradley F. Boeve
Affiliation:
Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, Chicago, IL, USA
Howard J. Rosen
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
Adam L. Boxer
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Katherine P. Rankin
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
Joel H. Kramer
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
Adam M. Staffaroni*
Affiliation:
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
*
Corresponding authors: Mark Sanderson-Cimino; Email: mark.sandersoncimino@ucsf.edu, Adam M. Staffaroni, email: adam.staffaroni@ucsf.edu
Corresponding authors: Mark Sanderson-Cimino; Email: mark.sandersoncimino@ucsf.edu, Adam M. Staffaroni, email: adam.staffaroni@ucsf.edu

Abstract

Objective:

The National Institutes of Health (NIH) Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER) is a validated laptop-based battery of executive functioning tests. A modified tablet version of the EXAMINER was developed on the UCSF Tablet-based Cognitive Assessment Tool (TabCAT-EXAMINER). Here we describe the battery and investigate the reliability and validity of a composite score.

Methods:

A diagnostically heterogeneous sample of 2135 individuals (mean age = 65.58, SD = 16.07), including controls and participants with a variety of neurodegenerative syndromes, completed the TabCAT-EXAMINER. A composite score was developed using confirmatory factor analysis and item response theory. Validity was evaluated via linear regressions that tested associations with neuropsychological tests, demographics, clinical diagnosis, and disease severity. Replicability of cross-sectional results was tested in a separate sample of participants (n = 342) recruited from a frontotemporal dementia study. As this separate sample also collected longitudinal TabCAT-EXAMINER measures, we additionally assessed test-retest reliability and associations between baseline disease severity and changes in TabCAT-EXAMINER scores.

Results:

The TabCAT-EXAMINER score was normally distributed, demonstrated high test-retest reliability, and was associated in the expected directions with independent tests of executive functioning, demographics, disease severity, and diagnosis. Greater baseline disease severity was associated with more rapid longitudinal TabCAT-EXAMINER decline.

Conclusions:

The TabCAT-EXAMINER is a tablet-based executive functioning battery developed for observational research and clinical trials. Performance can be summarized as a single composite score, and results of this study support its reliability and validity in cognitive aging and neurodegenerative disease cohorts.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Joel Kramer and Adam Staffaroni are co-senior authors.

References

Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology review, 16(1), 1742.CrossRefGoogle ScholarPubMed
Arrotta, K., Reyes, A., Kaestner, E., McDonald, C. R., Hermann, B. P., Barr, W. B., Sarmey, N., Sundar, S., Kondylis, E., Najm, I., Bingaman, W., & Busch, R. M. (2022). Cognitive phenotypes in frontal lobe epilepsy. Epilepsia, 63(7), 16711681.CrossRefGoogle ScholarPubMed
Assogna, M., Sprugnoli, G., Press, D., Dickerson, B., Macone, J., Bonnì, S., Borghi, I., Connor, A., Hoffman, M., Grover, N., Wong, B., Shen, C., Martorana, A., O’Reilly, M., Ruffini, G., El Fakhri, G., Koch, G., & Santarnecchi, E. (2021). Gamma-induction in frontotemporal dementia (GIFTeD) randomized placebo-controlled trial: Rationale, noninvasive brain stimulation protocol, and study design. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 7(1), e12219.Google ScholarPubMed
Azouvi, P., Arnould, A., Dromer, E., & Vallat-Azouvi, C. (2017). Neuropsychology of traumatic brain injury: An expert overview. Revue Neurologique, 173(7-8), 461472.CrossRefGoogle ScholarPubMed
Barker, M. S., Gottesman, R. T., Manoochehri, M., Chapman, S., Appleby, B. S., Brushaber, D., Devick, K. L., Dickerson, B. C., Domoto-Reilly, K., Fields, J. A., Forsberg, L. K., Galasko, D. R., Ghoshal, N., Goldman, J., Graff-Radford, N. R., Grossman, M., Heuer, H. W., Hsiung, G.-Y., Knopman, D. S.ALLFTD Consortium (2022). Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain, 145(3), 10791097.CrossRefGoogle ScholarPubMed
Baudouin, A., Clarys, D., Vanneste, S., & Isingrini, M. (2009). Executive functioning and processing speed in age-related differences in memory: Contribution of a coding task. Brain and cognition, 71(3), 240245.CrossRefGoogle ScholarPubMed
Bettcher, B. M., Mungas, D., Patel, N., Elofson, J., Dutt, S., Wynn, M., Watson, C. L., Stephens, M., Walsh, C. M., & Kramer, J. H. (2016). Neuroanatomical substrates of executive functions: Beyond prefrontal structures. Neuropsychologia, 85, 100109.CrossRefGoogle ScholarPubMed
Boeve, B. F., Boxer, A. L., Rosen, H. J., Forsberg, L. K., Heuer, H. W., Brushaber, D., Appleby, B., Biernacka, J. M., Bordelon, Y. M., Botha, H., Brannelly, P., Dickerson, B. C., Dickson, D. W., Kimiko, D-Reilly, Faber, K., Fagan, A., Fields, J. A., Fishman, A., Foroud, T. M., …Wszolek, Z. (2020). Studying the natural history of frontotemporal lobar degeneration (FTLD): The ARTFL LEFFTDS longitudinal FTLD (ALLFTD) protocol: Neuropsychiatry and behavioral neurology: DLB and FTD—clinical manifestations. Alzheimer’s & Dementia, 16(S6), e045482.CrossRefGoogle Scholar
Bott, N. T., Johnson, E. T., Schuff, N., Galifianakis, N., Subas, T., Pollock, J., Pressman, P., Kramer, J. H., & Possin, K. L. (2014). Sensitive measures of executive dysfunction in non-demented Parkinson’s disease. Parkinsonism & Related Disorders, 20(12), 14301433.CrossRefGoogle ScholarPubMed
Brearly, T. W., Rowland, J. A., Martindale, S. L., Shura, R. D., Curry, D., & Taber, K. H. (2018). Comparability of iPad and web-based NIH Toolbox Cognitive Battery administration in veterans. Archives of Clinical Neuropsychology, 34(4), 524530.CrossRefGoogle Scholar
Broadway, J. M., Rieger, R. E., Campbell, R. A., Quinn, D. K., Mayer, A. R., Yeo, R. A., Wilson, J. K., Gill, D., Fratzke, V., & Cavanagh, J. F. (2019). Executive function predictors of delayed memory deficits after mild traumatic brain injury. Cortex, 120, 240248.CrossRefGoogle ScholarPubMed
Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron disorders, 1(5), 293299.CrossRefGoogle Scholar
Byrne, B. M. (2001). Structural equation modeling: Perspectives on the present and the future. International Journal of Testing, 1(3-4), 327334.CrossRefGoogle Scholar
Canini, M., Battista, P., Della Rosa, P. A., Catricalà, E., Salvatore, C., Gilardi, M. C., & Castiglioni, I. (2014). Computerized neuropsychological assessment in aging: Testing efficacy and clinical ecology of different interfaces. Computational and Mathematical Methods in Medicine, 2014(1), 804723–13.CrossRefGoogle ScholarPubMed
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of statistical Software, 48(6), 129.CrossRefGoogle Scholar
Clark, D. J., Chatterjee, S. A., Skinner, J. W., Lysne, P. E., Sumonthee, C., Wu, S. S., Cohen, R. A., Rose, D. K., & Woods, A. J. (2021). Combining frontal transcranial direct current stimulation with walking rehabilitation to enhance mobility and executive function: A pilot clinical trial. Neuromodulation: Technology at the Neural Interface, 24(5), 950959.CrossRefGoogle ScholarPubMed
Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., Luby, J., Dagogo-Jack, A., & Alderson, A. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17(1), 123130.CrossRefGoogle ScholarPubMed
Delis, D., Kramer, J., Kaplan, E., & Ober, B. (2000). California verbal learning test, adult version (CVLT-II). The Psychological Corporation.Google Scholar
Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, , Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. The Lancet Neurology, 6(8), 734746.CrossRefGoogle ScholarPubMed
Faria, Cde A., Alves, H. V. D., & Charchat-Fichman, H. (2015). The most frequently used tests for assessing executive functions in aging. Dementia & Neuropsychologia, 9(2), 149155.CrossRefGoogle ScholarPubMed
Foong, J., Rozewicz, L., Quaghebeur, G., Davie, C., Kartsounis, L., Thompson, A., Miller, H. D., & Ron, A. M. (1997). Executive function in multiple sclerosis. The role of frontal lobe pathology. Brain: a journal of neurology, 120(1), 1526.CrossRefGoogle ScholarPubMed
Germine, L., Reinecke, K., & Chaytor, N. S. (2019). Digital neuropsychology: Challenges and opportunities at the intersection of science and software. The Clinical neuropsychologist, 33(2), 271286.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.CrossRefGoogle ScholarPubMed
Guarino, A., Favieri, F., Boncompagni, I., Agostini, F., Cantone, M., & Casagrande, M. (2019). Executive functions in Alzheimer disease: A systematic review. Frontiers in Aging Neuroscience, 10, 437.CrossRefGoogle ScholarPubMed
Hajjar, I., Okafor, M., McDaniel, D., Obideen, M., Dee, E., Shokouhi, M., Quyyumi, A. A., Levey, A., & Goldstein, F. (2020). Effects of candesartan vs lisinopril on neurocognitive function in older adults with executive mild cognitive impairment: A randomized clinical trial. JAMA Network Open, 3(8), e2012252e2012252.CrossRefGoogle ScholarPubMed
Ibanez, A., Yokoyama, J. S., Possin, K. L., Matallana, D., Lopera, F., Nitrini, R., Takada, L. T., Custodio, N., Sosa Ortiz, A. L., Avila-Funes, Jé A., Behrens, M. I., Slachevsky, A., Myers, R. M., Cochran, J. N., Brusco, L. I., Bruno, M. A., Brucki, S. M. D., Pina-Escudero, S. D., Okada de Oliveira, M.Miller, B. L. (2021). The multi-partner consortium to expand dementia research in Latin America (ReDLat): Driving multicentric research and implementation science. Frontiers in Neurology, 12, 631722.CrossRefGoogle Scholar
Inan, O. T., Tenaerts, P., Prindiville, S. A., Reynolds, H. R., Dizon, D. S., Cooper-Arnold, K., Turakhia, M., Pletcher, M. J., Preston, K. L., Krumholz, H. M., Marlin, B. M., Mandl, K. D., Klasnja, P., Spring, B., Iturriaga, E., Campo, R., Desvigne-Nickens, P., Rosenberg, Y., Steinhubl, S. R., & Califf, R. M. (2020). Digitizing clinical trials. NPJ digital medicine, 3(1), 101.CrossRefGoogle ScholarPubMed
Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M.Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535562.CrossRefGoogle Scholar
Jaeger, J. (2018). Digit symbol substitution test: The case for sensitivity over specificity in neuropsychological testing. Journal of Clinical Psychopharmacology, 38(5), 513519.CrossRefGoogle ScholarPubMed
Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological bulletin, 144(11), 11471185.CrossRefGoogle ScholarPubMed
Knopman, D. S., Kramer, J. H., Boeve, B. F., Caselli, R. J., Graff-Radford, N. R., Mendez, M. F., Miller, B. L., & Mercaldo, N. (2008). Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain, 131(11), 29572968.CrossRefGoogle ScholarPubMed
Kramer, J. H. (2014). Special series introduction: NIH EXAMINER and the assessment of executive functioning. Journal of the International Neuropsychological Society, 20(1), 810.CrossRefGoogle ScholarPubMed
Kramer, J. H., Mungas, D., Possin, K. L., Rankin, K. P., Boxer, A. L., Rosen, H. J., Bostrom, A., Sinha, L., Berhel, A., & Widmeyer, M. (2014). NIH EXAMINER: Conceptualization and development of an executive function battery. Journal of the International Neuropsychological Society, 20(1), 1119.CrossRefGoogle ScholarPubMed
Leite, J., Gonçalves, Ó.F., & Carvalho, S. (2022). Speed of Processing (SoP) training plus α-tACS in people with mild cognitive impairment: A double blind, parallel, placebo controlled trial study protocol. Frontiers in Aging Neuroscience, 14, 880510.CrossRefGoogle ScholarPubMed
Lezak, M. D., Howieson, D. B., Loring, D. W., & Fischer, J. S. (2004). Neuropsychological assessment. Oxford University Press.Google Scholar
Litvan, I., MacIntyre, A., Goetz, C. G., Wenning, G. K., Jellinger, K., Verny, M., Bartko, J. J., Jankovic, J., McKee, A., Brandel, J. P., Chaudhuri, K. R., Lai, E. C., D’Olhaberriague, L., Pearce, R. K. B., & Agid, Y. (1998). Accuracy of the clinical diagnoses of Lewy body disease, Parkinson disease, and dementia with Lewy bodies: A clinicopathologic study. Archives of neurology, 55(7), 969978.CrossRefGoogle ScholarPubMed
Longo, C. A., Kerr, E. N., & Smith, M. L. (2013). Executive functioning in children with intractable frontal lobe or temporal lobe epilepsy. Epilepsy & Behavior, 26(1), 102108.CrossRefGoogle ScholarPubMed
Matsunaga, M. (2010). How to factor-analyze your data right: Do’s, Don’ts, and how-to’s. International journal of psychological research, 3(1), 97110.CrossRefGoogle Scholar
McKeith, I. G., Boeve, B. F., Dickson, D. W., Halliday, G., Taylor, J.-P., Weintraub, D., Aarsland, D., Galvin, J., Attems, J., Ballard, C. G., Bayston, A., Beach, T. G., Blanc, F., Bohnen, N., Bonanni, L., Bras, J., Brundin, P., Burn, D., Chen-Plotkin, A., …Kosaka, K. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology, 89(1), 88100.CrossRefGoogle ScholarPubMed
Miller, J. B., Banks, S. J., Léger, G. C., & Cummings, J. L. (2014). Randomized controlled trials in frontotemporal dementia: Cognitive and behavioral outcomes. Translational Neurodegeneration, 3(1), 19.CrossRefGoogle ScholarPubMed
Miyagawa, T., Brushaber, D., Syrjanen, J., Kremers, W., Fields, J., Forsberg, L. K., Heuer, W., H., Knopman, D., Kornak, J., Boxer, A., ARTFL/LEFFTDS Consortium. (2020). Use of the CDR® plus NACC FTLD in mild FTLD: data from the ARTFL/LEFFTDS consortium. Alzheimer’s & Dementia, 16, 7990.CrossRefGoogle ScholarPubMed
Miyagawa, T., Brushaber, D., Syrjanen, J., Kremers, W., Fields, J., Forsberg, L. K., Heuer, H. W., Knopman, D., Kornak, J., Boxer, A., Rosen, H. J., Boeve, B. F., Appleby, B., Bordelon, Y., Bove, J., Brannelly, P., Caso, C., Coppola, G., Dever, R., …Wszolek, Z. (2020). Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: Data from the ARTFL/LEFFTDS Consortium. Alzheimer’s & Dementia, 16(1), 106117.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex, frontal lobe, tasks: A latent variable analysis. Cognitive psychology, 41(1), 49100.CrossRefGoogle ScholarPubMed
Monsell, S. E., Dodge, H. H., Zhou, X.-H., Bu, Y., Besser, L. M., Mock, C., Hawes, S. E., Kukull, W. A., & Weintraub, S. (2016). Results from the NACC uniform data set neuropsychological battery crosswalk study. Alzheimer Disease & Associated Disorders, 30(2), 134139.CrossRefGoogle ScholarPubMed
Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(S1), 173176.CrossRefGoogle ScholarPubMed
Mullady, S. S..-S., Castellanos, S., Lopez, L., Aguirre, G., Weeks, J., King, S., Valle, K., Goode, C., Tsoy, E., Possin, K., Miller, B., Kushel, M., & Lanata, S. (2022). Neurocognitive health of older adults experiencing homelessness in Oakland, California. Frontiers in Neurology, 13, 905779.CrossRefGoogle ScholarPubMed
Mungas, D., Reed, B. R., & Kramer, J. H. (2003). Psychometrically matched measures of global cognition, memory, and executive function for assesment of cognitive decline in older persons. Neuropsychology, 17(3), 380392.CrossRefGoogle Scholar
Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., Kertesz, A., Robert, P. H., Albert, M., Boone, K., Miller, B. L., Cummings, J., & Benson, D. F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 15461554.CrossRefGoogle ScholarPubMed
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241268.CrossRefGoogle ScholarPubMed
Petersen, R. C., Aisen, P., Boeve, B. F., Geda, Y. E., Ivnik, R. J., Knopman, D. S., Mielke, M., Pankratz, V. S., Roberts, R., Rocca, W. A., Weigand, S., Weiner, M., Wiste, H., & Jack, C. R. (2013). Mild cognitive impairment due to Alzheimer disease in the community. Annals of Neurology, 74(2), 199208.CrossRefGoogle ScholarPubMed
Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s disease neuroimaging initiative (ADNI): Clinical characterization. Neurology, 74(3), 201209.CrossRefGoogle Scholar
Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214228.CrossRefGoogle ScholarPubMed
Piccinin, A. M., & Rabbitt, P. (1999). Contribution of cognitive abilities to performance and improvement on a substitution coding task. Psychology and Aging, 14(4), 539551.CrossRefGoogle ScholarPubMed
Possin, K. L., Laluz, V. R., Alcantar, O. Z., Miller, B. L., & Kramer, J. H. (2011). Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer’s disease and behavioral variant frontotemporal dementia. Neuropsychologia, 49(1), 4348.CrossRefGoogle ScholarPubMed
Possin, K. L., LaMarre, A. K., Wood, K. A., Mungas, D. M., & Kramer, J. H. (2014). Ecological validity and neuroanatomical correlates of the NIH EXAMINER executive composite score. Journal of the International Neuropsychological Society, 20(1), 2028.CrossRefGoogle ScholarPubMed
Possin, K. L., Moskowitz, T., Erlhoff, S. J., Rogers, K. M., Johnson, E. T., Steele, N. Z., Higgins, J. J., Stiver, J., Alioto, A. G., Farias, S. T., Miller, B. J., & Rankin, K. P. (2018). The brain health assessment for detecting and diagnosing neurocognitive disorders. Journal of the American Geriatrics Society, 66(1), 150156.CrossRefGoogle Scholar
Possin, K. L., Moskowitz, T., Erlhoff, S. J., Rogers, K. M., Johnson, E. T., Steele, N. Z. R., Higgins, J. J., Stiver, J., Alioto, A. G., Farias, S. T., Miller, B. L., & Rankin, K. P. (2018). The brain health assessment for detecting and diagnosing neurocognitive disorders. Journal of the American Geriatrics Society, 66(1), 150156.CrossRefGoogle Scholar
Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., Obeso, , Marek, K., Litvan, I., Lang, A. E., Halliday, G., Goetz, C. G., Gasser, T., Dubois, B., Chan, P., Bloem, B. R., Adler, C. H., & Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson’s disease. Movement Disorders, 30(12), 15911601.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Stephens, M. L., & Possin, K. L. (2015). Executive dysfunction. CONTINUUM: Lifelong Learning in Neurology, 17(3): 423–433 Behavioral Neurology and Neuropsychiatry), 646.Google ScholarPubMed
Ramos, E., Dokuru, D., Van Berlo, V., Wojta, K., Wang, Q., & Huang, A. (2020). Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimers Dement, 16(1), 118130.CrossRefGoogle ScholarPubMed
Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., van Swieten, J. C., Seelaar, H., Dopper, E. G. P., Onyike, C. U., Hillis, A. E., Josephs, K. A., Boeve, B. F., Kertesz, A., Seeley, W. W., Rankin, K. P., Johnson, J. K., Gorno-Tempini, M.-L., Rosen, H., …Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(9), 24562477.CrossRefGoogle ScholarPubMed
Reineberg, A. E., & Banich, M. T. (2016). Functional connectivity at rest is sensitive to individual differences in executive function: A network analysis. Human Brain Mapping, 37(8), 29592975.CrossRefGoogle ScholarPubMed
Roman, C. A., & Arnett, P. A. (2016). Structural brain indices and executive functioning in multiple sclerosis: A review. Journal of Clinical and Experimental Neuropsychology, 38(3), 261274.CrossRefGoogle ScholarPubMed
Sachdev, P., Kalaria, R., O’Brien, J., Skoog, I., Alladi, S., Black, S. E., Blacker, D., Blazer, D. G., Chen, C., Chui, H., Ganguli, M., Jellinger, K., Jeste, D. V., Pasquier, F., Paulsen, J., Prins, N., Rockwood, K., Roman, G., & Scheltens, P. (2014). Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Disease & Associated Disorders, 28(3), 206218.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (1992). What do adult age differences in the digit symbol substitution test reflect? Journal of Gerontology, 47(3), P121P128.CrossRefGoogle ScholarPubMed
Samejima, F. (2011). The general graded response model. In Handbook of polytomous item response theory models (pp. 87118). Routledge.Google Scholar
Savalei, V., & Bentler, P. M. (2006). Structural equation modeling. In The handbook of marketing research: Uses, misuses, and future advances, vol. 330, (pp. 36). SAGE Publications, Inc.Google Scholar
Schatz, J., Stancil, M., Katz, T., & Sanchez, C. E. (2014). EXAMINER executive function battery and neurologic morbidity in pediatric sickle cell disease. Journal of the International Neuropsychological Society, 20(1), 2940.CrossRefGoogle ScholarPubMed
Schreiber, J. E., Possin, K. L., Girard, J. M., & Rey-Casserly, C. (2014). Executive function in children with attention deficit/hyperactivity disorder: The NIH EXAMINER battery. Journal of the International Neuropsychological Society, 20(1), 4151.CrossRefGoogle ScholarPubMed
Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling. Psychology press.CrossRefGoogle Scholar
Staffaroni, A. M., Asken, B. M., Casaletto, K. B., Fonseca, C., You, M., Rosen, H. J., Boxer, A. L., Elahi, F. M., Kornak, J., Mungas, D., & Kramer, J. H. (2021). Development and validation of the Uniform Data Set (v3. 0) executive function composite score (UDS3-EF). Alzheimer’s & Dementia, 17(4), 574583.CrossRefGoogle Scholar
Staffaroni, A. M., Bajorek, L., Casaletto, K. B., Cobigo, Y., Goh, S.-Yang M., Wolf, A., Heuer, H. W., Elahi, F. M., Ljubenkov, P. A., Dever, R., Kornak, J., Appleby, B., Bove, J., Bordelon, Y., Brannelly, P., Brushaber, D., Caso, C., Coppola, G., Dheel, C., … ARTFL/LEFFTDS consortium (2020). Assessment of executive function declines in presymptomatic and mildly symptomatic familial frontotemporal dementia: NIH-EXAMINER as a potential clinical trial endpoint. Alzheimer’s & Dementia, 16(1), 1121.CrossRefGoogle ScholarPubMed
Staffaroni, A. M., Clark, A. L., Taylor, J. C., Heuer, H. W., Sanderson-Cimino, M., Wise, A. B., Dhanam, S., Cobigo, Y., Wolf, A., Manoochehri, M., Forsberg, L., Mester, C., Rankin, K. P., Appleby, B. S., Bayram, E., Bozoki, A., Clark, D., Darby, R. R., Domoto-Reilly, K., … ALLFTD Consortium (2024). Reliability and validity of smartphone cognitive testing for frontotemporal lobar degeneration. JAMA Network Open, 7(4), e244266e244266.CrossRefGoogle ScholarPubMed
Staffaroni, A. M., Quintana, M., Wendelberger, B., Heuer, H. W., Russell, L. L., Cobigo, Y., Wolf, A., Goh, S.-Y. M., Petrucelli, L., Gendron, T. F., Heller, C., Clark, A. L., Taylor, J. C., Wise, A., Ong, E., Forsberg, L., Brushaber, D., Rojas, J. C., VandeVrede, L., … Frontotemporal Dementia Prevention Initiative (FPI) Investigators (2022). Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nature Medicine, 28(10), 21942206.CrossRefGoogle ScholarPubMed
Staffaroni, A. M., Tsoy, E., Taylor, J., Boxer, A. L., & Possin, K. L. (2020). Digital cognitive assessments for dementia: Digital assessments may enhance the efficiency of evaluations in neurology and other clinics. Practical Neurology (Fort Washington, Pa.), 2020, 2445.Google ScholarPubMed
Stasenko, A., Jacobs, D. M., Salmon, D. P., & Gollan, T. H. (2019). The Multilingual Naming Test (MINT) as a measure of picture naming ability in Alzheimer’s disease. Journal of the International Neuropsychological Society, 25(8), 821833.CrossRefGoogle ScholarPubMed
Stopford, C. L., Thompson, J. C., Neary, D., Richardson, A. M., & Snowden, J. S. (2012). Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex, 48(4), 429446.CrossRefGoogle ScholarPubMed
Team, R. C. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
Vaportzis, E., Giatsi Clausen, M., & Gow, A. J. (2017). Older adults perceptions of technology and barriers to interacting with tablet computers: A focus group study. Frontiers in Psychology, 8, 1687.CrossRefGoogle ScholarPubMed
Vossel, K., Ranasinghe, K. G., Beagle, A. J., La, A., Ah Pook, K., Castro, M., Mizuiri, D., Honma, S. M., Venkateswaran, N., Koestler, M., Zhang, W., Mucke, L., Howell, M. J., Possin, K. L., Kramer, J. H., Boxer, A. L., Miller, B. L., Nagarajan, S. S., & Kirsch, H. E. (2021). Effect of levetiracetam on cognition in patients with Alzheimer disease with and without epileptiform activity: A randomized clinical trial. JAMA Neurology, 78(11), 13451354.CrossRefGoogle ScholarPubMed
Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S. D., Atri, A., Kukull, W. A., Phelps, C., & Morris, J. C. (2018). Version 3 of the Alzheimer disease centers’ neuropsychological test battery in the Uniform Data Set (UDS). Alzheimer Disease & Associated Disorders, 32(1), 1017.CrossRefGoogle ScholarPubMed
Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., Carlozzi, N. E., Slotkin, J., Blitz, D., Wallner-Allen, K., Fox, N. A., Beaumont, J. L., Mungas, D., Nowinski, C. J., Richler, J., Deocampo, J. A., Anderson, J. E., Manly, J. J., Borosh, B., …Gershon, R. C. (2013). Cognition assessment using the NIH Toolbox. Neurology, 80(11_supplement_3), S54S64.CrossRefGoogle ScholarPubMed
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): The neuropsychological test battery. Alzheimer Disease & Associated Disorders, 23(2), 91101.CrossRefGoogle Scholar
Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8, 113.Google Scholar
Wilson, S. A., Byrne, P., Rodgers, S. E., & Maden, M. (2022). A systematic review of smartphone and tablet use by older adults with and without cognitive impairment. Innovation in Aging, 6(2), igac002.CrossRefGoogle ScholarPubMed
You, S. C., Geschwind, M. D., Sha, S. J., Apple, A., Satris, G., Wood, K. A., Johnson, E. T., Gooblar, J., Feuerstein, J. S., Finkbeiner, S., Kang, G. A., Miller, B. L., Hess, C. P., Kramer, J. H., & Possin, K. L. (2014). Executive functions in premanifest Huntington’s disease. Movement Disorders, 29(3), 405409.CrossRefGoogle ScholarPubMed
Yu, F., Lin, F. V., Salisbury, D. L., Shah, K. N., Chow, L., Vock, D., Nelson, N. W., Porsteinsson, A. P., & Jack, C. (2018). Efficacy and mechanisms of combined aerobic exercise and cognitive training in mild cognitive impairment: Study protocol of the ACT trial. Trials, 19(1), 113.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sanderson-Cimino et al. supplementary material

Sanderson-Cimino et al. supplementary material
Download Sanderson-Cimino et al. supplementary material(File)
File 7.3 MB