Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:36:47.715Z Has data issue: false hasContentIssue false

Cerebral Volume Loss, Cognitive Deficit, and Neuropsychological Performance: Comparative Measures of Brain Atrophy: II. Traumatic Brain Injury

Published online by Cambridge University Press:  28 February 2011

David F. Tate*
Affiliation:
Center for Neurological Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts Alzheimer's Disease Center, Boston University Medical Center, Boston, Massachusetts Department of Statistics, Brigham Young University, Provo, Utah
Rola Khedraki
Affiliation:
Center for Neurological Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
E. Shannon Neeley
Affiliation:
Department of Statistics, Brigham Young University, Provo, Utah
David K. Ryser
Affiliation:
Department of Physical Medicine and Rehabilitation, Intermountain Medical Center, Murray, Utah
Erin D. Bigler
Affiliation:
Department of Psychology and Neuroscience, Brigham Young University, Provo, Utah Department of Psychiatry, University of Utah, Salt Lake City, Utah
*
Correspondence and reprint requests to: David F. Tate, Center for Neurological Imaging, 1249 Boylston Street, Room 345, Boston, MA 02115. E-mail: dftatephd@mac.com

Abstract

Traumatic brain injury (TBI) results in a variable degree of cerebral atrophy that is not always related to cognitive measures across studies. However, the use of different methods for examining atrophy may be a reason why differences exist. The purpose of this manuscript was to examine the predictive utility of seven magnetic resonance imaging (MRI) -derived brain volume or indices of atrophy for a large cohort of TBI patients (n = 65). The seven quantitative MRI (qMRI) measures included uncorrected whole brain volume, brain volume corrected by total intracranial volume, brain volume corrected by the ratio of the individual TICV by group TICV, a ventricle to brain ratio, total ventricular volume, ventricular volume corrected by TICV, and a direct measure of parenchymal volume loss. Results demonstrated that the various qMRI measures were highly interrelated and that corrected measures proved to be the most robust measures related to neuropsychological performance. Similar to an earlier study that examined cerebral atrophy in aging and dementia, these results suggest that a single corrected brain volume measure is all that is necessary in studies examining global MRI indicators of cerebral atrophy in relationship to cognitive function making additional measures of global atrophy redundant and unnecessary. (JINS, 2011, 17, 308–316)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arndt, S., Cohen, G., Alliger, R.J., Swayze, V.W., Andreasen, N.C. (1991). Problems with ratio and proportion measures of imaged cerebral structures. Psychiatry Research, 40, 7990.CrossRefGoogle ScholarPubMed
Balthazar, M.L., Yasuda, C.L., Cendes, F., Damasceno, B.P. (2010). Learning, retrieval, and recognition are compromised in aMCI and mild AD: Are distinct episodic memory processes mediated by the same anatomical structures? Journal of the International Neuropsychological Society, 16(1), 205209.CrossRefGoogle ScholarPubMed
Bendlin, B.B., Ries, M.L., Lazar, M., Alexander, A.L., Dempsey, R.J., Rowley, H.A., Johnson, S.C. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage, 42(2), 503514.CrossRefGoogle ScholarPubMed
Bergeson, A.G., Lundin, R., Parkinson, R.B., Tate, D.F., Victoroff, J., Hopkins, R.O., Bigler, E.D. (2004). Clinical rating of cortical atrophy and cognitive correlates following traumatic brain injury. Clinical Neuropsychology, 18, 509520.CrossRefGoogle ScholarPubMed
Bigler, E.D., Anderson, C.V., Blatter, D.D., Anderson, C.V. (2002). Temporal lobe morphology in normal aging and traumatic brain injury. AJNR American Journal of Neuroradiology, 23(2), 255266.Google ScholarPubMed
Bigler, E.D., Lowry, C.M., Anderson, C.V., Johnson, S.C., Terry, J., Steed, M. (2000). Dementia, quantitative neuroimaging, and Apolipoprotein E genotype. AJNR American Journal of Neuroradiology, 21, 18571868.Google ScholarPubMed
Bigler, E.D., Neeley, E.S., Miller, M.J., Tate, D.F., Rice, S.A., Cleavinger, H., Welsh-Bohmer, K. (2004). Cerebral volume loss, cognitive deficit and neuropsychological performance: Comparative measures of brain atrophy: I. Dementia. Journal of the International Neuropsychological Society, 10(3), 442452.CrossRefGoogle ScholarPubMed
Bigler, E.D., Tate, D.F. (2001). Brain volume, intracranial volume, and dementia. Investigative Radiology, 36, 539546.CrossRefGoogle ScholarPubMed
Blatter, D.D., Bigler, E.D., Gale, S.C., Johnson, S.C., Anderson, C.V., Burnett, B.M., Horn, S. (1995). Quantitative volumetric analysis of brain MR: Normative database spanning five decades of life. AJNR American Journal of Neuroradiology, 16, 241251.Google Scholar
Blinkov, S.M., Glezer, I.I. (1968). The human brain in figures and tables: A quantitative handbook. New York: Plenum Press.Google Scholar
Bradley, W.G., Orrison, W.W. (2000). Hydrocephalus and cerebrospinal fluid flow. In W. W. Orrison (Ed.), Neuroimaging (pp. 7041716). Philadelphia: WB Saunders.Google ScholarPubMed
Brewer, J.B. (2009). Fully-automated volumetric MRI with normative ranges: Translation to clinical practice. Behavioural Neurology, 21(1), 2128.CrossRefGoogle ScholarPubMed
Cahn, D.A., Sullivan, E.V., Shear, P.K., Marsh, L., Fama, R., Lim, K.O., Pfefferbaum, A. (1998). Structural MRI correlates of recognition memory in Alzheimer's disease. Journal of the International Neuropsychological Society, 4, 106114.CrossRefGoogle ScholarPubMed
Carne, R.P., Vogrin, S., Litewka, L., Cook, M.J. (2006). Cerebral cortex: An MRI-based study of volume and variance with age and sex. Journal of Clinical Neuroscience, 13(1), 6072.CrossRefGoogle ScholarPubMed
Christensen, B.K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., Green, R.E. (2008). Recovery of cognitive function after traumatic brain injury: A multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl.), S3S15.CrossRefGoogle ScholarPubMed
Courchesne, E., Chisum, H.J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Press, G.A. (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672682.CrossRefGoogle ScholarPubMed
Dekaban, A.S., Sadowsky, D. (1978). Changes in brain weight during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345356.CrossRefGoogle ScholarPubMed
Fama, R., Sullivan, E.V., Shear, P.K., Cahn-Weiner, D.A., Marsh, L., Lim, K.O., Pfefferbaum, A. (2000). Structural brain correlates of verbal and nonverbal fluency measures in Alzheimer's disease. Neuropsychology, 14(1), 2941.CrossRefGoogle ScholarPubMed
Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., Dale, A.M. (2009). One-year brain atrophy evident in healthy aging. The Journal of Neuroscience, 29(48), 1522315231.CrossRefGoogle ScholarPubMed
Forstl, H., Sattel, H., Besthorn, C., Daniel, S., Geiger-Kabisch, C., Hentschel, F., Zerfab, R. (1996). Longitudinal cognitive, electroencephalographic and morphological brain changes in ageing and Alzheimer's disease. British Journal of Psychiatry, 168, 280286.CrossRefGoogle ScholarPubMed
Green, R.E., Colella, B., Christensen, B., Johns, K., Frasca, D., Bayley, M., Monette, G. (2008). Examining moderators of cognitive recovery trajectories after moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl. 2), S16S24.CrossRefGoogle ScholarPubMed
Gur, R.E., Turetsky, B.I., Cowell, P.E., Finkelman, C., Maany, V., Grossman, R.I., Gur, R.C. (2000). Temporolimbic volume reductions in schizophrenia. Archives of General Psychiatry, 57, 769775.CrossRefGoogle ScholarPubMed
Haug, J.O. (1962). Pneumoencephalographic studies in mental disease. Acta Psychiatrica Scandinavica Supplmentum, 165, 1114.Google Scholar
He, J., Farias, S., Martinez, O., Reed, B., Mungas, D., Decarli, C. (2009). Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. Archives of Neurology, 66(11), 13931399.CrossRefGoogle ScholarPubMed
Himanen, L., PhLic, R.P., Isoniemi, H., Helenius, H., PhLic, T.K., Tenovuo, O. (2006). Longitudinal cognitive changes in traumatic brain injury: A 30 year follow up study. Neurology, 66, 187192.CrossRefGoogle ScholarPubMed
Jack, C.R., Petersen, R.C., Xu, Y., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Kokmen, E.F. (1998). Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology, 51, 993999.CrossRefGoogle ScholarPubMed
Jack, C.R., Petersen, R.C., Xu, Y.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.CrossRefGoogle ScholarPubMed
Jack, C.R., Theodore, W.H., Cook, M., McCarthy, G. (1995). MRI-based hippocampal volumetrics: Data acquisition, normal ranges, and optimal protocol. Magnetic Resonance Imaging, 13(8), 10571064.CrossRefGoogle ScholarPubMed
Killiany, R.J., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., Albert, M.S. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Annals of Neurology, 47, 430439.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Fox, P.T. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120131.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Levine, B., Kovacevic, N., Nica, E.I., Cheung, G., Gao, F., Schwartz, M.L., Black, S.E. (2008). The Toronto Traumatic Brain Injury Study: Injury severity and quantified MRI. Neurology, 70, 771778.CrossRefGoogle ScholarPubMed
Loewenstein, D.A., Acevedo, A., Potter, E., Schinka, J.A., Raj, A., Greig, M.T., Duara, R. (2009). Severity of medial temporal atrophy and amnestic mild cognitive impairment: Selecting type and number of memory tests. The American Journal of Geriatric Psychiatry, 17(12), 10501058.CrossRefGoogle ScholarPubMed
Maxwell, W.L., MacKinnon, M.A., Stewart, J.E., Graham, D.I. (2010). Stereology of cerebral cortex after traumatic brain injury matched to the Glasgow outcome score. Brain, 133(Pt 1), 139160.CrossRefGoogle Scholar
Nellhaus, G. (1968). Head circumference from birth to eighteen years. Pediatrics, 41, 106114.CrossRefGoogle ScholarPubMed
Ng, K., Mikulis, D.J., Glazer, J., Kabani, N., Till, C., Greenberg, G., Green, R.E. (2008). Magnetic resonance imaging evidence of progression of subacute brain atrophy in moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl.), S35S44.CrossRefGoogle ScholarPubMed
Penna, S., Novack, T., Carlson, N., Grote, M., Corrigan, J., Hart, T. (2010). Residence following traumatic brain injury: A longitudinal study. Journal of Head Trauma Rehabilitation, 25, 5260.CrossRefGoogle ScholarPubMed
Perry, M.E., McDonald, C.R., Jr.Hagler, D.J., Gharapetian, L., Kuperman, J.M., Koyama, A.K., McEvoy, L.K. (2009). White matter tracts associated with set-shifting in healthy aging. Neuropsychologia, 47(13), 28352842.CrossRefGoogle ScholarPubMed
Peterson, B.S., Vohr, B., Staib, L.H., Cannistraci, C.J., Dolberg, A., Schneider, K.C., Ment, L.R. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. Journal of the American Medical Association, 284, 19391947.CrossRefGoogle ScholarPubMed
Raz, N., Raz, S., Bigler, E.D. (1988a). Ventriculomegaly in schizophrenia, the role of control groups and the perils of dichotomous thinking: A reply to Smith and Iacono. Psychiatry Research, 26, 245248.CrossRefGoogle Scholar
Raz, S., Raz, N., Bigler, E.D. (1988b). Ventriculomegaly in schizophrenia: Is the choice of controls important? Psychiatry Research, 24, 7177.CrossRefGoogle ScholarPubMed
Reiss, A.L., Abrams, M.T., Singer, H.S., Ross, J.L., Denkla, M.B. (1996). Brain development, gender and IQ in children: A volumetric imaging study. Brain, 119, 17631774.CrossRefGoogle ScholarPubMed
Robb, R. (1995). ANALYZE: Three-dimensional biomedical imaging. New York: VCH Publishers.Google Scholar
Robb, R.A. (2001). ANALYZE: The biomedical imaging resource at Mayo Clinic. IEEE Transactions on Medical Imaging, 20, 854867.CrossRefGoogle Scholar
Ruttan, L., Martin, K., Liu, A., Colella, B., Green, R.E. (2008). Long-term cognitive outcome in moderate to severe traumatic brain injury: A meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl.), S69S76.CrossRefGoogle ScholarPubMed
Shear, P.K., Sullivan, E.V., Mathalon, D.H., Lim, K.O., Davis, L.F., Yesavage, J.A., Pfefferbaum, A. (1995). Longitudinal volumetric computed tomographic analysis of regional brain changes in normal aging and Alzheimer's disease. Archives of Neurology, 52, 392402.CrossRefGoogle ScholarPubMed
Smith, C.D., Snowden, D.A., Wang, H., Markesbery, W.R. (2000). White matter volumes and periventricular white matter hyperintensities in aging and dementia. Neurology, 54, 838842.CrossRefGoogle ScholarPubMed
Tanabe, J.L., Amend, D., Schuff, N., DiSclafani, V., Ezekiel, F., Norman, D., Weiner, M.W. (1997). Tissue segmentation of the brain in Alzheimer's disease. AJNR American Journal of Neuroradiology, 18, 115123.Google Scholar
Tate, D.F., Bigler, E.D. (2000). Fornix and hippocampal atrophy in traumatic brain injury. Learning & Memory, 7(6), 442446.CrossRefGoogle ScholarPubMed
Wilson, R.S., Sullivan, M., de Toledo-Morrell, L., Stebbins, G.T., Bennett, D.A., Morrell, F. (1996). Association of memory and cognition in Alzheimer's disease with volumetric estimates of temporal lobe structures. Neuropsychology, 10, 459463.CrossRefGoogle Scholar
Xu, Y., Jack, C.R., O'Brien, P.C., Kokmen, E., Smith, G.E., Ivnik, R.J., Petersen, R.C. (2000). Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology, 54, 17601767.CrossRefGoogle ScholarPubMed
Xu, Y., McArthur, D.L., Alger, J.R., Etchepare, M., Hovda, D.A., Glenn, T.C., Vespa, P.M. (2010). Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. Journal of Cerebral Blood Flow Metabolism, 30, 883894.CrossRefGoogle ScholarPubMed
Zar, J.H. (1996). Biostatistical analysis. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar