Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T18:54:59.093Z Has data issue: false hasContentIssue false

Associations of environmental and lifestyle factors with spatial navigation in younger and older adults

Published online by Cambridge University Press:  30 August 2022

Hannah Maybrier
Affiliation:
Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, USA
Ben Julian A. Palanca
Affiliation:
Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, Missouri 63130, USA Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
Denise Head*
Affiliation:
Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, USA Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
*
Corresponding author: Denise Head, email: dhead@wustl.edu

Abstract

Objective:

Advanced age is associated with prominent impairment in allocentric navigation dependent on the hippocampus. This study examined whether age-related impairment in allocentric navigation and strategy selection was associated with sleep disruption or circadian rest-activity fragmentation. Further, we examined whether associations with navigation were moderated by perceived stress and physical activity.

Method:

Sleep fragmentation and total sleep time over the course of 1 week were assayed in younger (n = 42) and older (n = 37) adults via wrist actigraphy. Subsequently, participants completed cognitive mapping and route learning tasks, as well a measure of spontaneous navigation strategy selection. Measurements of perceived stress and an actigraphy-based index of physical activity were also obtained. Circadian rest-activity fragmentation was estimated via actigraphy post-hoc.

Results:

Age was associated with reduced cognitive mapping, route learning, allocentric strategy use, and total sleep time (ps < .01), replicating prior findings. Novel findings included that sleep fragmentation increased with advancing age (p = .009) and was associated with lower cognitive mapping (p = .022) within the older adult cohort. Total sleep time was not linearly associated with the navigation tasks (ps > .087). Post-hoc analyses revealed that circadian rest-activity fragmentation increased with advancing age within the older adults (p = .026) and was associated with lower cognitive mapping across the lifespan (p = .001) and within older adults (p = .005). Neither stress nor physical activity were robust moderators of sleep fragmentation associations with the navigation tasks (ps > .113).

Conclusion:

Sleep fragmentation and circadian rest-activity fragmentation are potential contributing factors to age effects on cognitive mapping within older adults.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ActiLife 6 User’s Manual. (2012). ActiLife 6 User’s Manual. ActiGraph Software Department.Google Scholar
Allison, S. L., Fagan, A. M., Morris, J. C., & Head, D. (2016). Spatial navigation in preclinical Alzheimer’s disease. Journal of Alzheimers Disease, 52, 7790. https://doi.org/10.3233/jad-150855 CrossRefGoogle ScholarPubMed
André, C., Tomadesso, C., de Flores, R., Branger, P., Rehel, S., Mézenge, F., Landeau, B., de la Sayette, V., Eustache, F., Chetelat, G., & Rauchs, G. (2019). Brain and cognitive correlates of sleep fragmentation in elderly subjects with and without cognitive deficits. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 142150. https://doi.org/10.1016/j.dadm.2018.12.009 Google ScholarPubMed
Astori, S., Wimmer, R. D., & Lüthi, A. (2013). Manipulating sleep spindles – expanding views on sleep, memory, and disease. Trends in Neurosciences, 36, 738748. https://doi.org/10.1016/j.tins.2013.10.001 CrossRefGoogle ScholarPubMed
Basner, M., & Dinges, D. F. (2011). Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep, 34, 581591. https://doi.org/10.1093/sleep/34.5.581 CrossRefGoogle ScholarPubMed
Belzak, W. C., & Bauer, D. J. (2019). Interaction effects may actually be nonlinear effects in disguise: A review of the problem and potential solutions. Addictive Behaviors, 94, 99108.CrossRefGoogle ScholarPubMed
Blackwell, T., Yaffe, K., Ancoli-Israel, S., Redline, S., Ensrud, K. E., Stefanick, M. L., Laffan, A., & Stone, K. L., for the Osteoporotic Fractures in Men (MrOS) Study Group (2011). Association of sleep characteristics and cognition in older community-dwelling men: The MrOS sleep study. Sleep, 34, 13471356. https://doi.org/10.5665/sleep.1276 CrossRefGoogle ScholarPubMed
Blume, C., Santhi, N., & Schabus, M. (2016). ‘nparACT’ package for R: A free software tool for the non-parametric analysis of actigraphy data. MethodsX, 3, 430435. https://doi.org/10.1016/j.mex.2016.05.006 CrossRefGoogle Scholar
Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27, 1007810083.CrossRefGoogle Scholar
Boulos, M. I., Jairam, T., Kendzerska, T., Im, J., Mekhael, A., & Murray, B. J. (2019). Normal polysomnography parameters in healthy adults: A systematic review and meta-analysis. The Lancet Respiratory Medicine, 7, 533543.CrossRefGoogle ScholarPubMed
Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 7797.CrossRefGoogle ScholarPubMed
Choi, L., Liu, Z., Matthews, C. E., & Buchowski, M. S. (2011). Validation of accelerometer wear and nonwear time classification algorithm. Medicine and Science in Sports and Exercise, 43, 357.CrossRefGoogle ScholarPubMed
Choi, S. H., Na, D. L., Lee, B. H., Hahm, D. S., Jeong, J. H., Yoon, S. J., Yoo, K. H., Ha, C. K., Han, I. W., & Dementia Research Group (2001). Estimating the validity of the Korean version of expanded clinical dementia rating (CDR) scale. Journal of the Korean Neurological Association, 19, 585591.Google Scholar
Cohen, A., Dahmen, W., & DeVore, R. (2003). Adaptive wavelet schemes for nonlinear variational problems. SIAM Journal on Numerical Analysis, 41, 17851823.CrossRefGoogle Scholar
Cohen, S., Kamarck, T., & Mermelstein, R. (1994). Perceived stress scale. In Cohen, S., Kessler, R. C. & Underwood Gordon, L. (Eds.), Measuring stress: A guide for health and social scientists (pp. 235283). Oxford University Press.Google Scholar
Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J., & Gillin, J. C. (1992). Automatic sleep/wake identification from wrist activity. Sleep, 15, 461469. https://doi.org/10.1093/sleep/15.5.461 CrossRefGoogle ScholarPubMed
Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19, 1518. https://doi.org/10.2307/1268249 Google Scholar
Daugherty, A. M., Yuan, P., Dahle, C. L., Bender, A. R., Yang, Y., & Raz, N. (2015). Path complexity in virtual water maze navigation: Differential associations with age, sex, and regional brain volume. Cerebral Cortex, 25, 31223131.CrossRefGoogle ScholarPubMed
de Souza, L., Benedito-Silva, A. A., Pires, M. L. N., Poyares, D., Tufik, S., & Calil, H. M. (2003). Further validation of actigraphy for sleep studies. Sleep, 26, 8185. https://doi.org/10.1093/sleep/26.1.81 CrossRefGoogle ScholarPubMed
Devore, E. E., Grodstein, F., Duffy, J. F., Stampfer, M. J., Czeisler, C. A., & Schernhammer, E. S. (2014). Sleep duration in midlife and later life in relation to cognition. Journal of the American Geriatrics Society, 62, 10731081.CrossRefGoogle ScholarPubMed
Devore, E. E., Grodstein, F., & Schernhammer, E. S. (2016). Sleep duration in relation to cognitive function among older adults: A systematic review of observational studies. Neuroepidemiology, 46, 5778.CrossRefGoogle ScholarPubMed
Diamond, D., & Rose, G. M. (1994). Stress impairs LTP and hippocampal-dependent memory. Annals of the New York Academy of Sciences, 746, 411414.CrossRefGoogle ScholarPubMed
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceeding of the National Academy of Science of the United States of America, 108, 30173022. https://doi.org/10.1073/pnas.1015950108 CrossRefGoogle ScholarPubMed
Feito, Y., Hornbuckle, L. M., Reid, L. A., & Crouter, S. E. (2017). Effect of ActiGraph’s low frequency extension for estimating steps and physical activity intensity. PLOS ONE, 12, e0188242. https://doi.org/10.1371/journal.pone.0188242 CrossRefGoogle ScholarPubMed
Fogel, S. M., & Smith, C. T. (2011). The function of the sleep spindle: A physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neuroscience & Biobehavioral Reviews, 35, 11541165. https://doi.org/10.1016/j.neubiorev.2010.12.003 CrossRefGoogle Scholar
Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the computer science and applications, Inc. accelerometer. Medicine & Science in Sports & Exercise, 30, 777781.CrossRefGoogle Scholar
Furman, A. J., Clements-Stephens, A. M., Marchette, S. A., & Shelton, A. L. (2014). Persistent and stable biases in spatial learning mechanisms predict navigational style. Cognitive, Affective, & Behavioral Neuroscience, 14, 13751391.CrossRefGoogle ScholarPubMed
Gianaros, P. J., Jennings, J. R., Sheu, L. K., Greer, P. J., Kuller, L. H., & Matthews, K. A. (2007). Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. Neuroimage, 35, 795803. https://doi.org/10.1016/j.neuroimage.2006.10.045 CrossRefGoogle ScholarPubMed
Graham, J. E., Christian, L. M., & Kiecolt-Glaser, J. K. (2006). Stress, age, and immune function: Toward a lifespan approach. Journal of Behavioral Medicine, 29, 389400. https://doi.org/10.1007/s10865-006-9057-4 CrossRefGoogle Scholar
Guzman-Marin, R., Bashir, T., Suntsova, N., Szymusiak, R., & McGinty, D. (2007). Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat. Neuroscience, 148, 325333. https://doi.org/10.1016/j.neuroscience.2007.05.030 CrossRefGoogle ScholarPubMed
Hagewoud, R., Havekes, R., Tiba, P. A., Novati, A., Hogenelst, K., Weinreder, P., Van der Zee, E. A., & Meerlo, P. (2010). Coping with sleep deprivation: Shifts in regional brain activity and learning strategy. Sleep, 33, 14651473.CrossRefGoogle ScholarPubMed
Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209, 4958. https://doi.org/10.1016/j.bbr.2010.01.012 CrossRefGoogle ScholarPubMed
Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. C. (1973). Quantification of sleepiness: A new approach. Psychophysiology, 10, 431436.CrossRefGoogle ScholarPubMed
Hooghiemstra, A. M., Eggermont, L. H. P., Scheltens, P., van der Flier, W. M., & Scherder, E. J. A. (2015). The rest-activity rhythm and physical activity in early-onset dementia. Alzheimer Disease & Associated Disorders, 29, 4549. https://doi.org/10.1097/wad.0000000000000037 CrossRefGoogle ScholarPubMed
Huang, Y.-L., Liu, R.-Y., Wang, Q.-S., Van Someren, E. J. W., Xu, H., & Zhou, J.-N. (2002). Age-associated difference in circadian sleep–wake and rest–activity rhythms. Physiology & Behavior, 76, 597603. https://doi.org/10.1016/S0031-9384(02)00733-3 CrossRefGoogle ScholarPubMed
Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196, 187191. https://doi.org/10.1016/j.bbr.2008.08.040 CrossRefGoogle ScholarPubMed
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. Journal of Neuroscience, 23, 59455952.CrossRefGoogle ScholarPubMed
Kaneshwaran, K., Olah, M., Tasaki, S., Yu, L., Bradshaw, E. M., Schneider, J. A., Buchman, A. S., Bennett, D. A., de Jager, P. L., & Lim, A. S. (2019). Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer’s dementia. Science Advances, 5, eaax7331.CrossRefGoogle ScholarPubMed
Kleemeyer, M. M., Kühn, S., Prindle, J., Bodammer, N. C., Brechtel, L., Garthe, A., Kempermann, G., Schaefer, S., & Lindenberger, U. (2016). Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. Neuroimage, 131, 155161.CrossRefGoogle ScholarPubMed
Kwan, R. Y. C., Liu, J. Y. W., Lee, D., Tse, C. Y. A., & Lee, P. H. (2020). A validation study of the use of smartphones and wrist-worn ActiGraphs to measure physical activity at different levels of intensity and step rates in older people. Gait & Posture, 82, 306312. https://doi.org/10.1016/j.gaitpost.2020.09.022 CrossRefGoogle ScholarPubMed
Lambiase, M. J., Gabriel, K. P., Kuller, L. H., & Matthews, K. A. (2013). Temporal relationships between physical activity and sleep in older women. Medicine and Science in Sports and Exercise, 45, 23622368. https://doi.org/10.1249/MSS.0b013e31829e4cea CrossRefGoogle ScholarPubMed
Lee, E.-H. (2012). Review of the psychometric evidence of the perceived stress scale. Asian Nursing Research, 6, 121127.CrossRefGoogle ScholarPubMed
Lee, M. L., Katsuyama, Â. M., Duge, L. S., Sriram, C., Krushelnytskyy, M., Kim, J. J., & de la Iglesia, H. O. (2016). Fragmentation of rapid eye movement and nonrapid eye movement sleep without total sleep loss impairs hippocampus-dependent fear memory consolidation. Sleep, 39, 20212031.CrossRefGoogle ScholarPubMed
Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T. (2017). The aging navigational system. Neuron, 95, 10191035. https://doi.org/10.1016/j.neuron.2017.06.037 CrossRefGoogle ScholarPubMed
Lim, A. S., Yu, L., Costa, M. D., Leurgans, S. E., Buchman, A. S., Bennett, D. A., & Saper, C. B. (2012). Increased fragmentation of rest-activity patterns is associated with a characteristic pattern of cognitive impairment in older individuals. Sleep, 35, 633640.CrossRefGoogle ScholarPubMed
Lo, J. C., Groeger, J. A., Cheng, G. H., Dijk, D.-J., & Chee, M. W. (2016). Self-reported sleep duration and cognitive performance in older adults: A systematic review and meta-analysis. Sleep Medicine, 17, 8798.CrossRefGoogle ScholarPubMed
Lucassen, P. J., Meerlo, P., Naylor, A. S., van Dam, A. M., Dayer, A. G., Fuchs, E., Oomen, C. A., & Czéh, B. (2010). Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. European Neuropsychopharmacology, 20, 117. https://doi.org/10.1016/j.euroneuro.2009.08.003 CrossRefGoogle ScholarPubMed
Luik, A. I., Zuurbier, L. A., Hofman, A., Van Someren, E. J., Ikram, M. A., & Tiemeier, H. (2015). Associations of the 24-h activity rhythm and sleep with cognition: A population-based study of middle-aged and elderly persons. Sleep Medicine, 16, 850855. https://doi.org/10.1016/j.sleep.2015.03.012 CrossRefGoogle ScholarPubMed
Luik, A. I., Zuurbier, L. A., Hofman, A., Van Someren, E. J. W., & Tiemeier, H. (2013). Stability and fragmentation of the activity rhythm across the sleep-wake cycle: The importance of age, lifestyle, and mental health. Chronobiology International, 30, 12231230. https://doi.org/10.3109/07420528.2013.813528 CrossRefGoogle ScholarPubMed
Lund, H. G., Reider, B. D., Whiting, A. B., & Prichard, J. R. (2010). Sleep patterns and predictors of disturbed sleep in a large population of college students. Journal of Adolescent Health, 46, 124132.CrossRefGoogle Scholar
Machida, M., Takamiya, T., Amagasa, S., Murayama, H., Fujiwara, T., Odagiri, Y., Kikuchi, H., Fukushima, N., Kouno, M., Saito, Y., Yoshimine, F., Inoue, S., & Shobugawa, Y. (2021). Objectively measured intensity-specific physical activity and hippocampal volume among community-dwelling older adults. Journal of Epidemiology.Google ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83.CrossRefGoogle ScholarPubMed
Maguire, E. A. (1998). Knowing where and getting there: A human navigation network. Science, 280, 921924. https://doi.org/10.1126/science.280.5365.921 CrossRefGoogle Scholar
Maich, K. H., Lachowski, A. M., & Carney, C. E. (2018). Psychometric properties of the consensus sleep diary in those with Insomnia disorder. Behavioral Sleep Medicine, 16, 117134.CrossRefGoogle ScholarPubMed
Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. Journal of Neuroscience, 31, 1526415268. https://doi.org/10.1523/jneurosci.3634-11.2011 CrossRefGoogle ScholarPubMed
McSorley, V. E., Bin, Y. S., & Lauderdale, D. S. (2019). Associations of sleep characteristics with cognitive function and decline among older adults. American Journal of Epidemiology, 188, 10661075.CrossRefGoogle ScholarPubMed
Miller, D. B., & O’Callaghan, J. P. (2005). Aging, stress and the hippocampus. Ageing Research Reviews, 4, 123140. https://doi.org/10.1016/j.arr.2005.03.002 CrossRefGoogle ScholarPubMed
Minkel, J., Moreta, M., Muto, J., Htaik, O., Jones, C., Basner, M., & Dinges, D. (2014). Sleep deprivation potentiates HPA axis stress reactivity in healthy adults. Health Psychology, 33, 14301434. https://doi.org/10.1037/a0034219 CrossRefGoogle ScholarPubMed
Mohlenhoff, B. S., Insel, P. S., Mackin, R. S., Neylan, T. C., Flenniken, D., Nosheny, R., Richards, A., Maruff, P., & Weiner, M. W. (2018). Total sleep time interacts with age to predict cognitive performance among adults. Journal of Clinical Sleep Medicine, 14, 15871594.CrossRefGoogle ScholarPubMed
Mueller, S. T., & Piper, B. J. (2014). The psychology experiment building language (PEBL) and PEBL test battery. Journal of Neuroscience Methods, 222, 250259. https://doi.org/10.1016/j.jneumeth.2013.10.024 CrossRefGoogle ScholarPubMed
Murata, Y., Oka, A., Iseki, A., Mori, M., Ohe, K., Mine, K., & Enjoji, M. (2018). Prolonged sleep deprivation decreases cell proliferation and immature newborn neurons in both dorsal and ventral hippocampus of male rats. Neuroscience Research, 131, 4551. https://doi.org/10.1016/j.neures.2017.08.008 CrossRefGoogle ScholarPubMed
Musiek, E. S., Bhimasani, M., Zangrilli, M. A., Morris, J. C., Holtzman, D. M., & Ju, Y.-E. S. (2018). Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurology, 75, 582. https://doi.org/10.1001/jamaneurol.2017.4719 CrossRefGoogle ScholarPubMed
Nair, D., Zhang, S. X., Ramesh, V., Hakim, F., Kaushal, N., Wang, Y., & Gozal, D. (2011). Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase–dependent pathways in mouse. American Journal of Respiratory and Critical Care Medicine, 184, 13051312.CrossRefGoogle Scholar
Niemann, C., Godde, B., & Voelcker-Rehage, C. (2014). Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Frontiers in Aging Neuroscience, 6, 170.CrossRefGoogle ScholarPubMed
O’Brien, K. M., Tronick, E. Z., & Moore, C. L. (2013). Relationship between hair cortisol and perceived chronic stress in a diverse sample. Stress and Health, 29, 337344. https://doi.org/10.1002/smi.2475 CrossRefGoogle Scholar
Ohayon, M. M., Carskadon, M. A., Guilleminault, C., & Vitiello, M. V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep, 27, 12551273.CrossRefGoogle ScholarPubMed
Ondze, B., Espa, F., Dauvilliers, Y., Billiard, M., & Besset, A. (2003). Sleep architecture, slow wave activity and sleep spindles in mild sleep disordered breathing. Clinical Neurophysiology, 114, 867874. https://doi.org/10.1016/S1388-2457(02)00389-9 CrossRefGoogle ScholarPubMed
Oosterman, J. M., Van Someren, E. J. W., Vogels, R. L. C., Van Harten, B., & Scherder, E. J. A. (2009). Fragmentation of the rest-activity rhythm correlates with age-related cognitive deficits. Journal of Sleep Research, 18, 129135. https://doi.org/10.1111/j.1365-2869.2008.00704.x CrossRefGoogle ScholarPubMed
Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 6572. https://doi.org/10.1006/nlme.1996.0007 CrossRefGoogle ScholarPubMed
Park, J. E., Lee, Y. J., Byun, M. S., Yi, D., Lee, J. H., Jeon, S. Y., Hwang, J. Y., Yoon, H., Choe, Y. M., Kim, Y. K., Shin, S. A., Suk, H. W., Lee, D. Y., & KBASE Research Group. (2021). Differential associations of age and Alzheimer’s disease with sleep and rest-activity rhythms across the adult lifespan. Neurobiology of Aging, 101, 141149.CrossRefGoogle ScholarPubMed
Physical Activity Guidelines Advisory Committee. (2008). Physical activity guidelines advisory committee report, 2008. US Department of Health and Human Services.Google Scholar
Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 41(3), 245251.CrossRefGoogle ScholarPubMed
Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neuroimage, 51, 501511. https://doi.org/10.1016/j.neuroimage.2010.03.020 CrossRefGoogle ScholarPubMed
Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience & Biobehavioral Reviews, 30, 730748.CrossRefGoogle ScholarPubMed
Rodgers, M. K., Sindone, J. A., & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33, 202.e15202.e22. https://doi.org/10.1016/j.neurobiolaging.2010.07.021 CrossRefGoogle ScholarPubMed
Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5, 359371.CrossRefGoogle Scholar
Sanford, L. D., Suchecki, D., & Meerlo, P. (2015). Stress, arousal, and sleep. Current Topics in Behavioral Neurosciences, 25, 379410. https://doi.org/10.1007/7854_2014_314 CrossRefGoogle ScholarPubMed
Schwabe, L., Schächinger, H., de Kloet, E. R., & Oitzl, M. S. (2009). Corticosteroids operate as a switch between memory systems. Journal of Cognitive Neuroscience, 22, 13621372. https://doi.org/10.1162/jocn.2009.21278 CrossRefGoogle Scholar
Sherman, S. M., Mumford, J. A., & Schnyer, D. M. (2015). Hippocampal activity mediates the relationship between circadian activity rhythms and memory in older adults. Neuropsychologia, 75, 617625.CrossRefGoogle ScholarPubMed
Soto-Rodriguez, S., Lopez-Armas, G., Luquin, S., Ramos-Zuñiga, R., Jauregui-Huerta, F., Gonzalez-Perez, O., & Gonzalez-Castañeda, R. E. (2016). Rapid eye movement sleep deprivation produces long-term detrimental effects in spatial memory and modifies the cellular composition of the subgranular zone. Frontiers in Cellular Neuroscience, 10, 132. https://doi.org/10.3389/fncel.2016.00132 CrossRefGoogle ScholarPubMed
Sportiche, N., Suntsova, N., Methippara, M., Bashir, T., Mitrani, B., Szymusiak, R., & McGinty, D. (2010). Sustained sleep fragmentation results in delayed changes in hippocampal-dependent cognitive function associated with reduced dentate gyrus neurogenesis. Neuroscience, 170, 247258. https://doi.org/10.1016/j.neuroscience.2010.06.038 CrossRefGoogle ScholarPubMed
Suchecki, D., Tiba, P. A., & Tufik, S. (2002). Hormonal and behavioural responses of paradoxical sleep-deprived rats to the elevated plus maze. Journal of Neuroendocrinology, 14, 549554. https://doi.org/10.1046/j.1365-2826.2002.00812.x CrossRefGoogle ScholarPubMed
Surachman, A., & Almeida, D. M. (2018). Stress and coping theory across the adult lifespan. Oxford University Press.Google Scholar
Swanson, L. M., Hood, M. M., Hall, M. H., Kravitz, H. M., Matthews, K. A., Joffe, H., Thurston, R. C., Butters, M. A., Ruppert, K., & Harlow, S. D. (2021). Associations between sleep and cognitive performance in a racially/ethnically diverse cohort: The study of women’s health across the nation. Sleep, 44, zsaa182.CrossRefGoogle Scholar
Tartar, J. L., McKenna, J. T., Ward, C. P., McCarley, R. W., Strecker, R. E., & Brown, R. E. (2010). Sleep fragmentation reduces hippocampal CA1 pyramidal cell excitability and response to adenosine. Neuroscience Letters, 469, 15. https://doi.org/10.1016/j.neulet.2009.11.032 CrossRefGoogle ScholarPubMed
Tartar, J. L., Ward, C. P., McKenna, J. T., Thakkar, M., Arrigoni, E., McCarley, R. W., Brown, R. E., & Strecker, R. E. (2006). Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. European Journal of Neuroscience, 23(10), 27392748.CrossRefGoogle Scholar
van Oostrom, S. H., Nooyens, A. C., van Boxtel, M. P., & Verschuren, W. M. (2018). Long sleep duration is associated with lower cognitive function among middle-age adults – the Doetinchem cohort study. Sleep Medicine, 41, 7885.CrossRefGoogle ScholarPubMed
Van Reeth, O., Weibel, L., Spiegel, K., Leproult, R., Dugovic, C., & Maccari, S. (2000). Interactions between stress and sleep: From basic research to clinical situations. Sleep Medicine Reviews, 4, 201220.CrossRefGoogle Scholar
Van Someren, E. J. W., Oosterman, J. M., Van Harten, B., Vogels, R. L., Gouw, A. A., Weinstein, H. C., Poggesi, A., Scheltens, Ph., & Scherder, E. J. A. (2019). Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. Neurobiology of Learning and Memory, 160, 132138. https://doi.org/10.1016/j.nlm.2018.05.017 CrossRefGoogle ScholarPubMed
Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D. H., Greve, D. N., Fischl, B., Dale, A. M., & Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32, 916932.CrossRefGoogle ScholarPubMed
Watson, K. B., Carlson, S. A., Gunn, J. P., Galuska, D. A., O’Connor, A., Greenlund, K. J., & Fulton, J. E. (2016). Physical inactivity among adults aged 50 years and older—United States, 2014. Morbidity and Mortality Weekly Report, 65(36), 954958.10.15585/mmwr.mm6536a3CrossRefGoogle Scholar
Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. Journal of Neuroscience, 33, 60126017.CrossRefGoogle ScholarPubMed
Wiener, J. M., Kmecova, H., & de Condappa, O. (2012). Route repetition and route retracing: Effects of cognitive aging. Frontiers in Aging Neuroscience, 4, 7. https://doi.org/10.3389/fnagi.2012.00007 CrossRefGoogle ScholarPubMed
Wilckens, K. A., Woo, S. G., Kirk, A. R., Erickson, K. I., & Wheeler, M. E. (2014). Role of sleep continuity and total sleep time in executive function across the adult lifespan. Psychology and Aging, 29, 658665. https://doi.org/10.1037/a0037234 CrossRefGoogle ScholarPubMed
Williams, M. J., Perland, E., Eriksson, M. M., Carlsson, J., Erlandsson, D., Laan, L., Mahebali, T., Potter, E., Frediksson, R., Benedict, C., & Schiöth, H. B. (2016). Recurrent sleep fragmentation induces insulin and neuroprotective mechanisms in middle-aged flies. Frontiers in Aging Neuroscience, 8, 180. https://doi.org/10.3389/fnagi.2016.00180 CrossRefGoogle ScholarPubMed
Witting, W., Kwa, I., Eikelenboom, P., Mirmiran, M., & Swaab, D. F. (1990). Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biological Psychiatry, 27, 563572.CrossRefGoogle ScholarPubMed
Wolbers, T., Weiller, C., & Büchel, C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 21, 401411.CrossRefGoogle ScholarPubMed
Supplementary material: File

Maybrier et al. supplementary material

Maybrier et al. supplementary material 1

Download Maybrier et al. supplementary material(File)
File 29.7 KB
Supplementary material: File

Maybrier et al. supplementary material

Maybrier et al. supplementary material 2

Download Maybrier et al. supplementary material(File)
File 35.1 MB