Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:06:31.914Z Has data issue: false hasContentIssue false

Slowing processing speed is associated with cognitive fatigue in newly diagnosed multiple sclerosis patients

Published online by Cambridge University Press:  25 April 2022

Marco Pitteri*
Affiliation:
Neurology Section, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
Caterina Dapor
Affiliation:
Neurology Section, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
John DeLuca
Affiliation:
Kessler Foundation, West Orange, NJ, USA Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, NJ, USA Department of Neurology, Rutgers, New Jersey Medical School, Newark, NJ, USA
Nancy D. Chiaravalloti
Affiliation:
Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, NJ, USA Neuropsychology and Neuroscience Lab, Kessler Foundation, East Hanover, NJ, USA
Damiano Marastoni
Affiliation:
Neurology Section, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
Massimiliano Calabrese*
Affiliation:
Neurology Section, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
*
Corresponding authors: Marco Pitteri, email: marco.pitteri@nhs.net; Massimiliano Calabrese, email: massimiliano.calabrese@univr.it
Corresponding authors: Marco Pitteri, email: marco.pitteri@nhs.net; Massimiliano Calabrese, email: massimiliano.calabrese@univr.it

Abstract

Objective:

To further investigate objective measures of cognitive fatigue (CF), defined as the inability to sustain performance over time, in newly diagnosed multiple sclerosis (MS) patients, by conducting a performance analysis on the Paced Auditory Serial Addition Test (PASAT) based on the type of errors (omissions vs. incorrect responses) committed.

Method:

Sixty-two newly diagnosed patients with MS (pwMS) and 41 healthy controls (HC) completed the PASAT. Analysis of the change in performance during the test was performed by comparing the number of correct responses, incorrect responses, and omissions in the 1st versus the 3rd tertile of the PASAT.

Results:

A significant decline in accuracy over time was observed to be related to an increment in the number of omissions, significantly more pronounced in pwMS than in HC. No change in the number of incorrect responses throughout the PASAT was observed for either group.

Conclusions:

CF can be detected even in newly diagnosed pwMS and might objectively manifest as a progressive increase in omissions during a sustained highly demanding task (i.e., PASAT). This pattern may reflect slowed processing speed and increased fatigue in pwMS. Focusing on omissions on the PASAT instead of correct responses only may improve its specificity as an objective measure of CF.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Marco Pitteri and Caterina Dapor equally contributed to the present work

References

Amato, M. P., Portaccio, E., Goretti, B., Zipoli, V., Ricchiuti, L., De Caro, M. F., Patti, F., Vecchio, R., Sorbi, S., & Trojano, M. (2006). The Rao’s brief repeatable battery and Stroop test: normative values with age, education and gender corrections in an Italian population. Multiple Sclerosis (Houndmills, Basingstoke, England), 12, 787793. https://doi.org/10.1177/1352458506070933 CrossRefGoogle Scholar
Andreasen, A. K., Spliid, P. E., Andersen, H., & Jakobsen, J. (2010). Fatigue and processing speed are related in multiple sclerosis. European Journal of Neurology, 17, 212218. https://doi.org/10.1111/j.1468-1331.2009.02776.x CrossRefGoogle ScholarPubMed
Bailey, A., Channon, S., & Beaumont, J. G. (2007). The relationship between subjective fatigue and cognitive fatigue in advanced multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 13, 7380. https://doi.org/10.1177/1352458506071162 CrossRefGoogle ScholarPubMed
Bakirtzis, C., Nikolaidis, I., Boziki, M. K., Artemiadis, A., Andravizou, A., Messinis, L., Ioannidis, P., & Grigoriadis, N. (2020). Cognitive fatigability is independent of subjective cognitive fatigue and mood in multiple sclerosis. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 33, 113121. https://doi.org/10.1097/WNN.0000000000000228 CrossRefGoogle ScholarPubMed
Berard, J. A., Smith, A. M., & Walker, L. A. S. (2018). A longitudinal evaluation of cognitive fatigue on a task of sustained attention in early relapsing-remitting multiple sclerosis. International Journal of MS Care, 20, 5561. https://doi.org/10.7224/1537-2073.2016-106 CrossRefGoogle ScholarPubMed
Bruce, J. M., Bruce, A. S., & Arnett, P. A. (2010). Response variability is associated with self-reported cognitive fatigue in multiple sclerosis. Neuropsychology, 24, 7783. https://doi.org/10.1037/a0015046 CrossRefGoogle ScholarPubMed
Bryant, D., Chiaravalloti, N. D., & DeLuca, J. (2004). Objective measurement of cognitive fatigue in multiple sclerosis. Rehabilitation Psychology, 49, 114122. https://doi.org/10.1037/0090-5550.49.2.114 CrossRefGoogle Scholar
Calabrese, M., & Pitteri, M. (2018). Cognition and fatigue in multiple sclerosis. In DeLuca, J. & Sandroff, B. M. (Eds.), Cognition and behavior in multiple sclerosis (pp. 127148). American Psychological Association.CrossRefGoogle Scholar
Cehelyk, E. K., Harvey, D. Y., Grubb, M. L., Jalel, R., El-Sibai, M. S., Markowitz, C. E., Berger, J. R., Hamilton, R. H., & Chahin, S. (2019). Uncovering the association between fatigue and fatigability in multiple sclerosis using cognitive control. Multiple Sclerosis and Related Disorders, 27, 269275. https://doi.org/10.1016/j.msard.2018.10.112 CrossRefGoogle ScholarPubMed
Cercignani, M., Dipasquale, O., Bogdan, I., Carandini, T., Scott, J., Rashid, W., Sabri, O., Hesse, S., Rullmann, M., Lopiano, L., Veronese, M., Martins, D., & Bozzali, M. (2021). Cognitive fatigue in multiple sclerosis is associated with alterations in the functional connectivity of monoamine circuits. Brain Communications, 3, fcab023. https://doi.org/10.1093/braincomms/fcab023 CrossRefGoogle ScholarPubMed
Chen, M. H., Deluca, J., Genova, H. M., Yao, B., & Wylie, G. R. (2020). Cognitive fatigue is associated with altered functional connectivity in interoceptive and reward pathways in multiple sclerosis. Diagnostics, 10, 122. https://doi.org/10.3390/diagnostics10110930 CrossRefGoogle ScholarPubMed
Chen, M. H., Wylie, G. R., Sandroff, B. M., Dacosta-Aguayo, R., DeLuca, J., & Genova, H. M. (2020). Neural mechanisms underlying state mental fatigue in multiple sclerosis: a pilot study. Journal of Neurology, 267, 23722382. https://doi.org/10.1007/s00415-020-09853-w CrossRefGoogle ScholarPubMed
Cohen, J. A., Fischer, J. S., Bolibrush, D. M., Jak, A. J., Kniker, J. E., Mertz, L. A., Skaramagas, T. T., & Cutter, G. R. (2000). Intrarater and interrater reliability of the MS functional composite outcome measure. Neurology, 54, 802806. https://doi.org/10.1212/wnl.54.4.802 CrossRefGoogle ScholarPubMed
DeLuca, J. (2005a). Fatigue, cognition, and mental effort. In DeLuca, J. (Ed.), Fatigue as a window to the brain (pp. 3758). MIT Press.CrossRefGoogle Scholar
DeLuca, J. (2005b). Fatigue: its definition, its study, and its future. In DeLuca, J. (Ed.), Fatigue as a window to the brain (pp. 3758). MIT Press.CrossRefGoogle Scholar
DeLuca, J., Chelune, G. J., Tulsky, D. S., Lengenfelder, J., & Chiaravalloti, N. D. (2004). Is speed of processing or working memory the primary information processing deficit in multiple sclerosis? Journal of Clinical and Experimental Neuropsychology, 26, 550562. https://doi.org/10.1080/13803390490496641 CrossRefGoogle ScholarPubMed
Demaree, H. A., DeLuca, J., Gaudino, E. A., & Diamond, B. J. (1999). Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. Journal of Neurology Neurosurgery and Psychiatry, 67, 661663. https://doi.org/10.1136/jnnp.67.5.661 CrossRefGoogle ScholarPubMed
Fisk, J. D., Ritvo, P. G., Ross, L., Haase, D. A., Marrie, T. J., & Schlech, W. F. (1994). Measuring the functional impact of fatigue: initial validation of the fatigue impact scale Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 18, S79S83. https://doi.org/10.1093/clinids/18.supplement_1.s79 CrossRefGoogle ScholarPubMed
Genova, H. M., Rajagopalan, V., Deluca, J., Das, A., Binder, A., Arjunan, A., Chiaravalloti, N., & Wylie, G. (2013). Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE, 8, e78811. https://doi.org/10.1371/journal.pone.0078811 CrossRefGoogle ScholarPubMed
Gullo, H. L., Fleming, J., Bennett, S., & Shum, D. H. K. (2019). Cognitive and physical fatigue are associated with distinct problems in daily functioning, role fulfilment, and quality of life in multiple sclerosis. Multiple Sclerosis and Related Disorders, 31, 118123. https://doi.org/10.1016/j.msard.2019.03.024 CrossRefGoogle ScholarPubMed
Induruwa, I., Constantinescu, C. S., & Gran, B. (2012). Fatigue in multiple sclerosis – a brief review. Journal of the Neurological Sciences, 323, 915. https://doi.org/10.1016/j.jns.2012.08.007 CrossRefGoogle ScholarPubMed
JASP Team. (2019). JASP (Version 0.9.0.1) [Computer software]. https://jasp-stats.org Google Scholar
Kluckow, S. W., Rehbein, J. G., Schwab, M., Witte, O. W., & Bublak, P. (2016). What you get from what you see: parametric assessment of visual processing capacity in multiple sclerosis and its relation to cognitive fatigue. Cortex, 83, 167180. https://doi.org/10.1016/j.cortex.2016.07.018 CrossRefGoogle ScholarPubMed
Kluger, B. M., Krupp, L. B., & Enoka, R. M. (2013). Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology, 80, 409416. https://doi.org/10.1212/WNL.0b013e31827f07be CrossRefGoogle ScholarPubMed
Krupp, L. B., & Elkins, L. E. (2000). Fatigue and declines in cognitive functioning in multiple sclerosis. Neurology, 55, 934939. https://doi.org/10.1212/WNL.55.7.934 CrossRefGoogle ScholarPubMed
Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis. Neurology, 33, 1444. https://doi.org/10.1212/wnl.33.11.1444 CrossRefGoogle ScholarPubMed
Lassmann, H. (2018). Multiple sclerosis pathology. Cold Spring Harbor Perspectives in Medicine, 8, 115. https://doi.org/10.1101/cshperspect.a028936 CrossRefGoogle ScholarPubMed
Linnhoff, S., Fiene, M., Heinze, H. J., & Zaehle, T. (2019). Cognitive fatigue in multiple sclerosis: an objective approach to diagnosis and treatment by transcranial electrical stimulation. Brain Sciences, 9, 123. https://doi.org/10.3390/brainsci9050100 CrossRefGoogle ScholarPubMed
Loy, B. D., Taylor, R. L., Fling, B. W., & Horak, F. B. (2017). Relationship between perceived fatigue and performance fatigability in people with multiple sclerosis: a systematic review and meta-analysis. Journal of Psychosomatic Research, 100, 17. https://doi.org/10.1016/j.jpsychores.2017.06.017 CrossRefGoogle ScholarPubMed
Marchesi, O., Vizzino, C., Meani, A., Conti, L., Riccitelli, G. C., Preziosa, P., Filippi, M., & Rocca, M. A. (2020). Fatigue in multiple sclerosis patients with different clinical phenotypes: a clinical and magnetic resonance imaging study. European Journal of Neurology, 27, 25492560. https://doi.org/10.1111/ene.14471 CrossRefGoogle ScholarPubMed
Mollison, D., Sellar, R., Bastin, M., Mollison, D., Chandran, S., Wardlaw, J., & Connick, P. (2017). The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: a systematic review and meta-analysis. PLoS ONE, 12, 116. https://doi.org/10.1371/journal.pone.0177727 CrossRefGoogle ScholarPubMed
Morrow, S. A., Rosehart, H., & Johnson, A. M. (2015). Diagnosis and quantification of cognitive fatigue in multiple sclerosis. Cognitive and Behavioral Neurology : Official Journal of the Society for Behavioral and Cognitive Neurology, 28, 2732. https://doi.org/10.1097/WNN.0000000000000050 CrossRefGoogle ScholarPubMed
Neumann, M., Sterr, A., Claros-Salinas, D., Gütler, R., Ulrich, R., & Dettmers, C. (2014). Modulation of alertness by sustained cognitive demand in MS as surrogate measure of fatigue and fatigability. Journal of the Neurological Sciences, 340, 178182. https://doi.org/10.1016/j.jns.2014.03.024 CrossRefGoogle ScholarPubMed
Paul, R. H., Beatty, W. W., Schneider, R., Blanco, C. R., & Hames, K. A. (1998). Cognitive and physical fatigue in multiple sclerosis: relations between self-report and objective performance. Applied Neuropsychology, 5, 143148. https://doi.org/10.1207/s15324826an0503_5 CrossRefGoogle ScholarPubMed
Penner, I. K., Raselli, C., Stöcklin, M., Opwis, K., Kappos, L., & Calabrese, P. (2009). The Fatigue scale for motor and cognitive functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Multiple Sclerosis (Houndmills, Basingstoke, England), 15, 15091517. https://doi.org/10.1177/1352458509348519 CrossRefGoogle ScholarPubMed
Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F. D., Montalban, X., O’Connor, P., Sandberg-Wollheim, M., Thompson, A. J., Waubant, E., Weinshenker, B., & Wolinsky, J. S. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69, 292302. https://doi.org/10.1002/ana.22366 CrossRefGoogle Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403428. https://doi.org/10.1037/0033-295X.103.3.403 CrossRefGoogle ScholarPubMed
Sandry, J., Dobryakova, E., & Deluca, J. (2015). New research on cognitive fatigue in multiple sclerosis. National Academy of Neuropsychology Bulletin, 29, 2527.Google Scholar
Schwid, S. R., Tyler, C. M., Weinstein, A., Scheid, E. A., & Mcdermott, M. P. (2003). Cognitive fatigue during a test requiring sustained attention: a pilot study. Multiple Sclerosis (Houndmills, Basingstoke, England), 2003, 503508.CrossRefGoogle Scholar
Solari, A., Motta, A., Radice, D., & Mendozzi, L. (2007). A shortened version of PASAT-3 is feasible. Multiple Sclerosis (Houndmills, Basingstoke, England), 13, 10201025. https://doi.org/10.1177/1352458507077619 CrossRefGoogle ScholarPubMed
Strober, L. B., & Arnett, P. A. (2005). An examination of four models predicting fatigue in multiple sclerosis. Archives of Clinical Neuropsychology, 20, 631646. https://doi.org/10.1016/j.acn.2005.04.002 CrossRefGoogle ScholarPubMed
Tombaugh, T. N. (2006). A comprehensive review of the paced auditory serial addition test (PASAT). Archives of Clinical Neuropsychology, 21, 5376. https://doi.org/10.1016/j.acn.2005.07.006 CrossRefGoogle ScholarPubMed
Tommasin, S., De Luca, F., Ferrante, I., Gurreri, F., Castelli, L., Ruggieri, S., Prosperini, L., Pantano, P., Pozzilli, C., & De Giglio, L. (2020). Cognitive fatigability is a quantifiable distinct phenomenon in multiple sclerosis. Journal of Neuropsychology, 14, 370383. https://doi.org/10.1111/jnp.12197 CrossRefGoogle ScholarPubMed
Walker, L. A. S., Berard, J. A., Berrigan, L. I., Rees, L. M., & Freedman, M. S. (2012). Detecting cognitive fatigue in multiple sclerosis: method matters. Journal of the Neurological Sciences, 316, 8692. https://doi.org/10.1016/j.jns.2012.01.021 CrossRefGoogle ScholarPubMed
Wilting, J., Rolfsnes, H. O., Zimmermann, H., Behrens, M., Fleischer, V., Zipp, F., & Gröger, A. (2016). Structural correlates for fatigue in early relapsing remitting multiple sclerosis. European Radiology, 26, 515523. https://doi.org/10.1007/s00330-015-3857-2 CrossRefGoogle ScholarPubMed