Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:04:47.312Z Has data issue: false hasContentIssue false

Decision-Making as a Latent Construct and its Measurement Invariance in a Large Sample of Adolescent Cannabis Users

Published online by Cambridge University Press:  02 May 2019

Ileana Pacheco-Colón*
Affiliation:
Department of Psychology, Center for Children and Families, Florida International University,Miami, FL 33199, USA
Samuel W. Hawes
Affiliation:
Department of Psychology, Center for Children and Families, Florida International University,Miami, FL 33199, USA
Jacqueline C. Duperrouzel
Affiliation:
Department of Psychology, Center for Children and Families, Florida International University,Miami, FL 33199, USA
Catalina Lopez-Quintero
Affiliation:
Department of Epidemiology, University of Florida, Gainesville, FL 32610, USA
Raul Gonzalez
Affiliation:
Department of Psychology, Center for Children and Families, Florida International University,Miami, FL 33199, USA
*
Correspondence and reprint requests to: Ileana Pacheco-Colón, Department of Psychology, Center for Children and Families, Florida International University, 11200 SW 8th Street, AHC1 Rm. 140, Miami, FL 33199, USA. E-mail: ipach008@fiu.edu

Abstract

Objective: Relative to the vast literature that employs measures of decision-making (DM), rigorous examination of their psychometric properties is sparse. This study aimed to determine whether three measures of DM assess the same construct, and to measure invariance of this construct across relevant covariates. Method: Participants were 372 adolescents at risk of escalation in cannabis use. DM was assessed via four indices from the Cups Task, Game of Dice Task (GDT), and Iowa Gambling Task (IGT). We used confirmatory factor analysis to assess unidimensionality of the DM construct, and moderated nonlinear factor analysis (MNLFA) to examine its measurement invariance. Results: The unidimensional model of DM demonstrated good fit. MNLFA results revealed that sex influenced mean DM scores, such that boys had lower risk-taking behaviors. There was evidence of differential item functioning (DIF), such that IQ and age moderated the IGT intercept and GDT factor loading, respectively. Significant effects were retained in the final model, which produced participant-specific DM factor scores. These scores showed moderate stability over time. Conclusions: Indices from three DM tasks loaded significantly onto a single factor, suggesting that these DM tasks assess a single underlying construct. We suggest that this construct represents the ability to make optimal choices that maximize rewards in the presence of risk. Our final DM factor accounts for DIF caused by covariates, making it comparable across adolescents with different characteristics. (JINS, 2019, 25, 661–667)

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, D.J. (2017). A more general model for testing measurement invariance and differential item functioning. Psychological Methods, 22(3), 507526. doi: 10.1037/met0000077.CrossRefGoogle ScholarPubMed
Bechara, A. (2007). Iowa Gambling Task Professional Manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Bechara, A., Damasio, A.R., Damasio, H., & Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 715.CrossRefGoogle ScholarPubMed
Bechara, A. & Damasio, H. (2002). Decision-making and addiction (part I): impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences. Neuropsychologia, 40(10), 16751689. doi: 10.1016/S0028-3932(02)00015-5.CrossRefGoogle ScholarPubMed
Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia, 40(10), 16901705. doi: 10.1016/S0028-3932(02)00016-7.CrossRefGoogle ScholarPubMed
Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., & Markowitsch, H.J. (2005). Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: associations with executive functions. Neuropsychology, 19(3), 267277. doi: 10.1037/0894-4105.19.3.267.CrossRefGoogle Scholar
Brand, M., Laier, C., Pawlikowski, M., & Markowitsch, H.J. (2009). Decision making with and without feedback: The role of intelligence, strategies, executive functions, and cognitive styles. Journal of Clinical and Experimental Neuropsychology, 31(8), 984998. doi: 10.1080/13803390902776860.CrossRefGoogle ScholarPubMed
Brand, M., Recknor, E.C., Grabenhorst, F., & Bechara, A. (2007). Decisions under ambiguity and decisions under risk: Correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. Journal of Clinical and Experimental Neuropsychology, 29(1), 8699. doi: 10.1080/13803390500507196.CrossRefGoogle ScholarPubMed
Brand, M., Roth-Bauer, M., Driessen, M., & Markowitsch, H.J. (2008). Executive functions and risky decision-making in patients with opiate dependence. Drug and Alcohol Dependence, 97(1), 6472. doi: 10.1016/j.drugalcdep.2008.03.017.CrossRefGoogle ScholarPubMed
Brevers, D., Bechara, A., Cleeremans, A., Kornreich, C., Verbanck, P., & Noël, X. (2014). Impaired decision-making under risk in individuals with alcohol dependence. Alcoholism: Clinical and Experimental Research, 38(7), 19241931. doi: 10.1111/acer.12447.CrossRefGoogle ScholarPubMed
Brown, E.C., Hack, S.M., Gold, J.M., Carpenter, W.T., Fischer, B.A., Prentice, K.P., & Waltz, J.A. (2015). Integrating frequency and magnitude information in decision-making in schizophrenia: an account of patient performance on the Iowa Gambling Task. Journal of Psychiatric Research, 66–67, 1623. doi: 10.1016/j.jpsychires.2015.04.007.CrossRefGoogle ScholarPubMed
Buelow, M.T. & Barnhart, W.R. (2018). Test-retest reliability of common behavioral decision making tasks. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 33(1), 125129. doi: 10.1093/arclin/acx038.CrossRefGoogle ScholarPubMed
Buelow, M.T. & Blaine, A.L. (2015). The assessment of risky decision making: a factor analysis of performance on the Iowa Gambling Task, Balloon Analogue Risk Task, and Columbia Card Task. Psychological Assessment, 27(3), 777785. doi: 10.1037/a0038622.CrossRefGoogle ScholarPubMed
Casey, B.J., Jones, R.M., & Hare, T.A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124(1), 111126. doi: 10.1196/annals.1440.010.CrossRefGoogle ScholarPubMed
Churchwell, J.C., Lopez-Larson, M., & Yurgelun-Todd, D.A. (2010). Altered frontal cortical volume and decision making in adolescent cannabis users. Frontiers in Psychology, 1, 225. doi: 10.3389/fpsyg.2010.00225.CrossRefGoogle ScholarPubMed
Curran, P.J., McGinley, J.S., Bauer, D.J., Hussong, A.M., Burns, A., Chassin, L., Sher, K., & Zucker, R. (2014). A moderated nonlinear factor model for the development of commensurate measures in integrative data analysis. Multivariate Behavioral Research, 49(3), 214231. doi: 10.1080/00273171.2014.889594.CrossRefGoogle ScholarPubMed
Drechsler, R., Rizzo, P., & Steinhausen, H.C. (2008). Decision-making on an explicit risk-taking task in preadolescents with attention-deficit/hyperactivity disorder. Journal of Neural Transmission, 115(2), 201209.CrossRefGoogle Scholar
Duperrouzel, J.C., Hawes, S., Lopez-Quintero, C., Pacheco-Colón, I., Coxe, S., Hayes, T., & Gonzalez, R. (2019). Adolescent cannabis use and its associations with decision-making and episodic memory: preliminary results from a longitudinal study. Neuropsychology. doi: 10.1037/neu00000538CrossRefGoogle ScholarPubMed
Gonzalez, R., Schuster, R.M., Mermelstein, R.M., & Diviak, K.R. (2015). The role of decision-making in cannabis-related problems among young adults. Drug and Alcohol Dependence, 154, 214221. doi: 10.1016/j.drugalcdep.2015.06.046.CrossRefGoogle ScholarPubMed
Hawes, S.W., Trucco, E.M., Duperrouzel, J.C., Coxe, S., & Gonzalez, R. (2018). Developmental pathways of adolescent cannabis use: risk factors, outcomes and sex-specific differences. Substance Use & Misuse, 54(2), 271281. doi: 10.1080/10826084.2018.1517177.CrossRefGoogle ScholarPubMed
Hooper, C.J., Luciana, M., Conklin, H.M., & Yarger, R.S. (2004). Adolescents’ performance on the Iowa Gambling Task: Implications for the development of decision making and ventromedial prefrontal cortex. Developmental Psychology, 40(6), 11481158. doi: 10.1037/0012-1649.40.6.1148.CrossRefGoogle ScholarPubMed
Labudda, K., Woermann, F.G., Mertens, M., Pohlmann-Eden, B., Markowitsch, H.J., & Brand, M. (2008). Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Research, 187(4), 641650. doi: 10.1007/s00221-008-1332-x.CrossRefGoogle ScholarPubMed
Levin, I.P & Hart, S.S. (2003). Risk preferences in young children: early evidence of individual differences in reaction to potential gains and losses. Journal of Behavioral Decision Making, 16(5), 397413. doi: 10.1002/bdm.453.CrossRefGoogle Scholar
Levin, I.P., Hart, S.S., Weller, J.A., & Harshman, L.A. (2007). Stability of choices in a risky decision-making task: a 3-year longitudinal study with children and adults. Journal of Behavioral Decision Making, 20(3), 241252. doi: 10.1002/bdm.552.CrossRefGoogle Scholar
Li, X., Lu, Z.-L., D’Argembeau, A., Ng, M., & Bechara, A. (2010). The Iowa gambling task in fMRI images. Human Brain Mapping, 31(3), 410423. doi: 10.1002/hbm.20875.Google ScholarPubMed
Lopez-Quintero, C., Granja, K., Hawes, S., Duperrouzel, J.C., Pacheco-Colón, I., & Gonzalez, R. (2018). Transition to drug co-use among adolescent cannabis users: the role of decision-making and mental health. Addictive Behaviors, 85, 4350. doi: 10.1016/j.addbeh.2018.05.010.CrossRefGoogle ScholarPubMed
Monterosso, J., Ehrman, R., Napier, K.L., O’Brien, C.P., & Childress, A.R. (2001). Three decision-making tasks in cocaine-dependent patients: do they measure the same construct? Addiction, 96(12), 18251837. doi: 10.1046/j.1360-0443.2001.9612182512.x.CrossRefGoogle ScholarPubMed
Muthén, L.K. & Muthén, B.O. (2012). Mplus Version 7 User’s guide. Los Angeles, CA: Muthén & Muthén.Google Scholar
Rao, H., Korczykowski, M., Pluta, J., Hoang, A., & Detre, J.A. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: an fMRI Study of the Balloon Analog Risk Task (BART). NeuroImage, 42(2), 902910. doi: 10.1016/j.neuroimage.2008.05.046.CrossRefGoogle Scholar
Rippeth, J.D., Heaton, R.K., Carey, C.L., Marcotte, T.D., Moore, D.J., Gonzalez, R., Wolfson, T., Grant, I., & Group, T.H. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10(1), 114. doi: 10.1017/S1355617704101021.CrossRefGoogle ScholarPubMed
Ross, J.M., Graziano, P., Pacheco-Colón, I., Coxe, S., & Gonzalez, R. (2016). Decision- making does not moderate the association between cannabis use and body mass index among adolescent cannabis users. Journal of the International Neuropsychological Society: JINS, 22(9), 944949. doi: 10.1017/S1355617716000278.CrossRefGoogle ScholarPubMed
Shulman, E.P., Harden, K.P., Chein, J.M., & Steinberg, L. (2015). Sex differences in the developmental trajectories of impulse control and sensation-seeking from early adolescence to early adulthood. Journal of Youth and Adolescence, 44(1), 117. doi: 10.1007/s10964-014-0116-9.CrossRefGoogle ScholarPubMed
Toplak, M.E., Sorge, G.B., Benoit, A., West, R.F., & Stanovich, K.E. (2010). Decision-making and cognitive abilities: a review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clinical Psychology Review, 30(5), 562581. doi: 10.1016/j.cpr.2010.04.002.CrossRefGoogle ScholarPubMed
van den Bos, R., Homberg, J., & de Visser, L. (2013). A critical review of sex differences in decision-making tasks: focus on the Iowa Gambling Task. Behavioural Brain Research, 238, 95108. doi: 10.1016/j.bbr.2012.10.002.CrossRefGoogle ScholarPubMed
Weller, J.A., Levin, I.P., & Bechara, A. (2010). Do individual differences in Iowa Gambling Task performance predict adaptive decision making for risky gains and losses? Journal of Clinical and Experimental Neuropsychology, 32(2), 141150. doi: 10.1080/13803390902881926.CrossRefGoogle ScholarPubMed
Wilkinson, G.S. & Robertson, G.J. (2006). WRAT 4: Wide Range Achievement Test; Professional Manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Xue, G., Lu, Z., Levin, I.P., Weller, J.A., Li, X., & Bechara, A. (2009). Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cerebral Cortex, 19(5), 10191027. doi: 10.1093/cercor/bhn147.CrossRefGoogle ScholarPubMed