Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:58:09.679Z Has data issue: false hasContentIssue false

Contributions to Understanding the Neuropsychology of Alcoholism: An INS Legacy

Published online by Cambridge University Press:  04 December 2017

Edith V. Sullivan*
Affiliation:
Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
*
Correspondence and reprint requests to: Edith, V., Sullivan, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723. E-mail: edie@stanford.edu

Abstract

Alcohol use disorder (AUD) has been a major cause of family, social, and personal strife for centuries, with current prevalence estimates of 14% for 12-month and 29% lifetime AUD. Neuropsychological testing of selective cognitive, sensory, and motor functions complemented with in vivo brain imaging has enabled tracking the consequences of AUD, which follows a dynamic course of development, maintenance, and recovery or relapse. Controlled studies of alcoholism reviewed herein provide evidence for disruption of selective functions involving executive, visuospatial, mnemonic, emotional, and attentional processes, response inhibition, prosody, and postural stability and brain systems supporting these functions. On a hopeful front, longitudinal study provides convincing evidence for improvement in brain structure and function following sustained sobriety. These discoveries have a strong legacy in the International Neuropsychological Society (INS), starting from its early days when assumptions regarding which brain regions were disrupted relied solely on patterns of functional sparing and impairment deduced from testing. This review is based on the symposium presentation delivered at the 2017 annual North American meeting of the INS in celebration of the 50th anniversary since its institution in 1967. In the spirit of the meeting’s theme, “Binding the Past and Present,” the lecture and this review recognized the past by focusing on early, rigorous neuropsychological studies of alcoholism and their influence on research currently conducted using imaging methods enabling hypothesis testing of brain substrates of observed functional deficits. (JINS, 2017, 23, 843–859)

Type
Section 3 – Neuropsychiatric Disorders
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alsop, D.C., Makovetskaya, E., Kumar, S., Selim, M., & Schlaug, G. (2005). Markedly reduced apparent blood volume on bolus contrast magnetic resonance imaging as a predictor of hemorrhage after thrombolytic therapy for acute ischemic stroke. Stroke, 36(4), 746750. doi: 01.STR.0000158913.91058.93 Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorder (DSM-V). Washington, DC: American Psychiatric Association.Google Scholar
Arciniegas, D.B., & Beresford, T.P. (2001). Neuropsychiatry: An introductory approach. Cambridge: Cambridge University Press.Google Scholar
Babinski, J. (1914). Contribution à l'étude des troubles mentaux dans l’hémiplégie organique cérébrale (anosognosie). Revue Neurologique, 27, 845848.Google Scholar
Bartels, C., Kunert, H.J., Stawicki, S., Kroner-Herwig, B., Ehrenreich, H., & Krampe, H. (2007). Recovery of hippocampus-related functions in chronic alcoholics during monitored long-term abstinence. Alcohol Alcohol, 42(2), 92102.Google Scholar
Bates, M.E., Voelbel, G.T., Buckman, J.F., Labouvie, E.W., & Barry, D. (2005). Short-term neuropsychological recovery in clients with substance use disorders. Alcoholism: Clinical and Experimental Research, 29(3), 367377.CrossRefGoogle ScholarPubMed
Bell, M.D., Vissicchio, N.A., & Weinstein, A.J. (2016). Cognitive training and work therapy for the treatment of verbal learning and memory deficits in veterans with alcohol use disorders. Journal of Dual Diagnosis, 12(1), 8389. doi: 10.1080/15504263.2016.1145779 CrossRefGoogle ScholarPubMed
Bierut, L.J., Dinwiddie, S.H., Begleiter, H., Crowe, R.R., Hesselbrock, V., Nurnberger, J.I. Jr., & Reich, T. (1998). Familial transmission of substance dependence: Alcohol, marijuana, cocaine, and habitual smoking: A report from the Collaborative Study on the Genetics of Alcoholism. Archives of General Psychiatry, 55(11), 982988.Google Scholar
Blansjaar, B., Vielvoye, G., van Dijk, J., & Rijnders, R. (1992). Similar brain lesions in alcoholics and Korsakoff patients: MRI, psychometric and clinical findings. Clinical Neurology and Neurosurgery, 93, 197203.Google Scholar
Bowden, S.C. (1990). Separating cognitive impairment in neurologically asymptomatic alcoholism from Wernicke-Korsakoff syndrome: Is the neuropsychological distinction justified? Psychological Bulletin, 107(3), 355366.Google Scholar
Brandt, J., Butters, N., Ryan, C., & Bayog, R. (1983). Cognitive loss and recovery in long-term alcohol abusers. Archives of General Psychiatry, 40, 435442.CrossRefGoogle ScholarPubMed
Brown, J.A. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 1221.Google Scholar
Butters, N., & Cermak, L.S. (1980). Alcoholic Korsakoff’s Syndrome: An information processing approach to amnesia. New York: Academic Press, Inc.Google Scholar
Caine, D., Halliday, G.M., Kril, J.J., & Harper, C.G. (1997). Operational criteria for the classification of chronic alcoholics: Identification of Wernicke’s encephalopathy. Journal of Neurology, Neurosurgery, and Psychiatry, 62(1), 5160.Google Scholar
Cardenas, V.A., Studholme, C., Gazdzinski, S., Durazzo, T.C., & Meyerhoff, D.J. (2007). Deformation-based morphometry of brain changes in alcohol dependence and abstinence. Neuroimage, 34(3), 879887.Google Scholar
Carlen, P.L., Wilkinson, D.A., Wortzman, G., & Holgate, R. (1984). Partially reversible cerebral atrophy and functional improvement in recently abstinent alcoholics. The Canadian Journal of Neurological Sciences, 11(4), 441446.Google Scholar
Carlen, P.L., Wortzman, G., Holgate, R.C., Wilkinson, D.A., & Rankin, J.C. (1978). Reversible cerebral atrophy in recently abstinent chronic alcoholics measured by computed tomography scans. Science, 200(4345), 10761078.Google Scholar
Cermak, L.S., Butters, N., & Goodglass, H. (1971). The extent of memory loss in Korsakoff patients. Neuropsychologia, 9(3), 307315.Google Scholar
Cermak, L.S., & Ryback, R. (1976). Recovery of verbal short-term memory in alcoholics. Journal of the Studies on Alcohol, 37, 4652.Google Scholar
Chanraud, S., Pitel, A.L., Muller-Oehring, E.M., Pfefferbaum, A., & Sullivan, E.V. (2013). Remapping the brain to compensate for impairment in recovering alcoholics. Cerebral Cortex, 23(1), 97104. doi: 10.1093/cercor/bhr381 CrossRefGoogle ScholarPubMed
Chanraud, S., Pitel, A.L., Pfefferbaum, A., & Sullivan, E.V. (2011). Disruption of functional connectivity of the default-mode network in alcoholism. Cerebral Cortex, 21(10), 22722281. doi: 10.1093/cercor/bhq297 Google Scholar
Chanraud, S., Pitel, A.L., Rohlfing, T., Pfefferbaum, A., & Sullivan, E.V. (2010). Dual tasking and working memory in alcoholism: Relation to frontocerebellar circuitry. Neuropsychopharmacology, 35(9), 18681878. doi: 10.1038/npp.2010.56 Google Scholar
Chanraud, S., Pitel, A.L., & Sullivan, E.V. (2010). Structural imaging of alcohol abuse. In M.E. Shenton & B.I. Turetsky (Eds.), Understanding neuropsychiatric disorders. Cambridge: Cambridge University Press.Google Scholar
De Rosa, E., & Sullivan, E.V. (2003). Enhanced release from proactive interference in nonamnesic alcoholic individuals: Implications for impaired associative binding. Neuropsychology, 17(3), 469481.Google Scholar
Desmond, J.E., Chen, S.H., De Rosa, E., Pryor, M.R., Pfefferbaum, A., & Sullivan, E.V. (2003). Increased fronto-cerebellar activation in alcoholics during verbal working memory: An fMRI study. Neuroimage, 19, 15101520. doi: 12948707 Google Scholar
Desmond, J.E., Gabrieli, J.D., Wagner, A.D., Ginier, B.L., & Glover, G.H. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. The Journal of Neuroscience, 17(24), 96759685.Google Scholar
Detre, J.A., & Alsop, D.C. (1999). Perfusion magnetic resonance imaging with continuous arterial spin labeling: Methods and clinical applications in the central nervous system. European Journal of Radiology, 30(2), 115124. doi: S0720-048X(99)00050-9 [pii] Google Scholar
Edenberg, H.J., & Foroud, T. (2014). Genetics of alcoholism. Handbook of Clinical Neurology, 125, 561571. doi: 10.1016/B978-0-444-62619-6.00032-X Google Scholar
Ellis, R.J., & Oscar-Berman, M. (1989). Alcoholism, aging, and functional cerebral asymmetries. Psychological Bulletin, 106, 128147.Google Scholar
Fabian, M.S., & Parsons, O.A. (1983). Differential improvement of functions in recovering alcoholic women. Journal of Abnormal Psychology, 92, 8795.CrossRefGoogle ScholarPubMed
Falconer, D.S. (1965). The inheritance of liability to certain diseases, estimated from the incidence among relatives. Annals of Human Genetics, 29, 5176.CrossRefGoogle Scholar
Fama, R., Hardcastle, C., Sassoon, S.A., Zahr, N.M., Pfefferbaum, A., & Sullivan, E.V. (2017). Neurological and nutritional biomarkers of cognitive impairment in alcoholics. Paper presented at the International Neuropsychological Society, New Orleans, LA.Google Scholar
Fein, G., Bachman, L., Fisher, S., & Davenport, L. (1990). Cognitive impairments in abstinent alcoholics. Western Journal of Medicine, 152, 531537.Google Scholar
Fein, G., Torres, J., Price, L.J., & Di Sclafani, V. (2006). Cognitive performance in long-term abstinent alcoholic individuals. Alcoholism, Clinical and Experimental Research, 30(9), 15381544.Google Scholar
Flavell, J.H. (1971). First discussant’s comments: What is memory development the development of? Human Development, 14, 272278.Google Scholar
Fregly, A.R., Graybiel, A., & Smith, M.S. (1972). Walk on floor eyes closed (WOFEC): A new addition to an ataxia test battery. Aerospace Medicine, 43(4), 395399.Google Scholar
Gilman, S., Adams, K., Koeppe, R.A., Berent, S., Kluin, K.J., Modell, J.G., & Brunberg, J.A. (1990). Cerebellar and frontal hypometabolism in alcoholic cerebellar degeneration studied with Positron Emission Tomography. Annals of Neurology, 28(6), 775785.Google Scholar
Glenn, S.W., & Parsons, O.A. (1992). Neuropsychological efficiency measures in male and female alcoholics. Journal of Studies on Alcohol, 53(6), 546552.CrossRefGoogle ScholarPubMed
Glenn, S.W., Parsons, O.A., & Sinha, R. (1994). Assessment of recovery of electrophysiological and neuropsychological functions in chronic alcoholics. Biological Psychiatry, 36(7), 443452.Google Scholar
Glover, G.H. (2011). Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America, 22(2), 133139, vii. doi: 10.1016/j.nec.2010.11.001 Google Scholar
Goldstein, K. (1942). Aftereffects of brain injuries in war. New York: Grune and Stratton.Google Scholar
Goldstein, K. (1995). The organism. New York: Zone Books.Google Scholar
Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253258. doi: 10.1073/pnas.0135058100 0135058100 [pii] Google Scholar
Harper, C.G. (1979). Wernicke’s encephalopathy: A more common disease than realized. A neuropathological study of 51 cases. Journal of Neurology, Neurosurgery, and Psychiatry, 42, 226232.Google Scholar
Harper, C.G., Sheedy, D.L., Lara, A.I., Garrick, T.M., Hilton, J.M., & Raisanen, J. (1998). Prevalence of Wernicke-Korsakoff syndrome in Australia: Has thiamine fortification made a difference? The Medical Journal of Australia, 168(11), 542545.Google Scholar
Hart, J.T. (1965). Memory and the feeling-of-knowing experience. Journal of Educational Psychology, 56(4), 208216.Google Scholar
Hegedus, A.M., Tarter, R.E., Hill, S.Y., Jacob, T., & Winsten, N.E. (1984). Static ataxia: A possible marker for alcoholism. Alcoholism, Clinical and Experimental Research, 8(6), 580582.Google Scholar
Koob, G.F., & Le Moal, M. (2006). Neurobiological theories of addiction neurobiology of addiction. Oxford: Elsevier.Google Scholar
Lampl, C., & Yazdi, K. (2002). Central pontine myelinolysis. European Neurology, 47(1), 310. doi: ene47003 [pii] Google Scholar
Le Berre, A.P., Muller-Oehring, E.M., Kwon, D., Serventi, M.R., Pfefferbaum, A., & Sullivan, E.V. (2016). Differential compromise of prospective and retrospective metamemory monitoring and their dissociable structural brain correlates. Cortex, 81, 192202. doi: 10.1016/j.cortex.2016.05.002 Google Scholar
Le Berre, A.P., Müller-Oehring, E.M., Schulte, T., Serventi, M.R., Pfefferbaum, A., & Sullivan, E.V. (2017). Deviant functional activation and connectivity of the right insula contribute to lack of awareness of episodic memory impairment. Cortex, in press.Google Scholar
Le Berre, A.P., Pinon, K., Vabret, F., Pitel, A.L., Allain, P., Eustache, F., & Beaunieux, H. (2010). Study of metamemory in patients with chronic alcoholism using a feeling-of-knowing episodic memory task. Alcoholism, Clinical and Experimental Research, 34(11), 18881898. doi: 10.1111/j.1530-0277.2010.01277.x Google Scholar
Le Berre, A.P., & Sullivan, E.V. (2016). Anosognosia for memory impairment in addiction: Insights from neuroimaging and neuropsychological assessment of metamemory. Neuropsychol Review, 26(4), 420431. doi: 10.1007/s11065-016-9323-3 Google Scholar
Leber, W.R., Jenkins, R., & Parsons, O.A. (1981). Recovery of visual-spatial learning and memory in chronic alcoholics. Journal of Clinical Psychology, 37, 192197.Google Scholar
Mann, K., Gunther, A., Stetter, F., & Ackermann, K. (1999). Rapid recovery from cognitive deficits in abstinent alcoholics: A controlled test-retest study. Alcohol Alcohol, 34(4), 567574.CrossRefGoogle ScholarPubMed
Mattis, S. (1988). Dementia Rating Scale (DRS) Professional Manual. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655667. doi: 10.1007/s00429-010-0262-0 Google Scholar
Nixon, S.J., Tivis, R., Ceballos, N., Varner, J.L., & Rohrbaugh, J. (2002). Neurophysiological efficiency in male and female alcoholics. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26(5), 919927.Google Scholar
Nixon, S.J., Tivis, R., & Parsons, O.A. (1995). Behavioral dysfunction and cognitive efficiency in male and female alcoholics. Alcoholism, Clinical and Experimental Research, 19(3), 577581.Google Scholar
Oscar-Berman, M. (2000). Neuropsychological vulnerabilities in chronic alcoholism. In A. Noronha, M. Eckardt & K. Warren (Eds.), Review of NIAAA’s Neuroscience and Behavioral Research Portfolio, NIAAA Research Monograph No. 34 (pp. 437472). Bethesda, MD: National Institutes of Health.Google Scholar
Oscar-Berman, M., & Marinkovic, K. (2007). Alcohol: Effects on neurobehavioral functions and the brain. Neuropsychology Review, 17(3), 239257. doi: 17874302 CrossRefGoogle ScholarPubMed
Oscar-Berman, M., Valmas, M.M., Sawyer, K.S., Ruiz, S.M., Luhar, R.B., & Gravitz, Z.R. (2014). Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism. Handbook of Clinical Neurology, 125, 183210. doi: 10.1016/B978-0-444-62619-6.00012-4 Google Scholar
Parsons, O.A., & Leber, W.R. (1981). The relationship between cognitive dysfunction and brain damage in alcoholics: Causal, interactive, or epiphenomenal? Alcoholism, Clinical and Experimental Research, 5, 326343.Google Scholar
Parsons, O.A., & Nixon, S.J. (1993). Neurobehavioral sequelae of alcoholism. Neurologic Clinics, 11(1), 205218.Google Scholar
Parsons, O.A., & Nixon, S.J. (1998). Cognitive-functioning in sober social drinkers: A review of the research since 1986. Journal of Studies on Alcohol, 59(2), 180190.Google Scholar
Peterson, L.R., & Peterson, M.J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193198.Google Scholar
Pfefferbaum, A., Chanraud, S., Pitel, A.L., Muller-Oehring, E., Shankaranarayanan, A., Alsop, D.C., & Sullivan, E.V. (2011). Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cerebral Cortex, 21(1), 233244. doi: 10.1093/cercor/bhq090 Google Scholar
Pfefferbaum, A., Chanraud, S., Pitel, A.L., Shankaranarayanan, A., Alsop, D.C., Rohlfing, T., & Sullivan, E.V. (2010). Volumetric cerebral perfusion imaging in healthy adults: Regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Research, 182(3), 266273. doi: 10.1016/j.pscychresns.2010.02.010 Google Scholar
Pfefferbaum, A., Desmond, J.E., Galloway, C., Menon, V., Glover, G.H., & Sullivan, E.V. (2001). Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study. Neuroimage, 14(1 Pt 1), 720.Google Scholar
Pfefferbaum, A., Rosenbloom, M., Chu, W., Sassoon, S.A., Rohlfing, T., Pohl, K.M., & Sullivan, E.V. (2014). White matter microstructural recovery with abstinence and decline with relapse in alcoholism interacts with normal aging: A controlled longitudinal DTI study. The Lancet Psychiatry, 1, 202212.Google Scholar
Pfefferbaum, A., Sullivan, E.V., Mathalon, D.H., Shear, P.K., Rosenbloom, M.J., & Lim, K.O. (1995). Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics. Alcoholism, Clinical and Experimental Research, 19(5), 11771191.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Sullivan, E.V., Rosenbloom, M.J., Mathalon, D.H., & Lim, K.O. (1998). A controlled study of cortical gray matter and ventricular changes in alcoholic men over a five year interval. Archives of General Psychiatry, 55(10), 905912.Google Scholar
Pitel, A.L., Eustache, F., & Beaunieux, H. (2014). Component processes of memory in alcoholism: Pattern of compromise and neural substrates. Handbook of Clinical Neurology, 125, 211225. doi: 10.1016/B978-0-444-62619-6.00013-6 Google Scholar
Pitel, A.L., Rivier, J., Beaunieux, H., Vabret, F., Desgranges, B., & Eustache, F. (2009). Changes in the episodic memory and executive functions of abstinent and relapsed alcoholics over a 6-month period. Alcoholism, Clinical and Experimental Research, 33(3), 490498. doi: 10.1111/j.1530-0277.2008.00859.x Google Scholar
Pitel, A.L., Zahr, N.M., Jackson, K., Sassoon, S.A., Rosenbloom, M.J., Pfefferbaum, A., & Sullivan, E.V. (2011). Signs of preclinical Wernicke’s encephalopathy and thiamine levels as predictors of neuropsychological deficits in alcoholism without Korsakoff’s syndrome. Neuropsychopharmacology, 36(3), 580588. doi :npp2010189 [pii]10.1038/npp.2010.189 Google Scholar
Prigatano, G. (1999). Principles of neuropsychological rehabilitation. New York: Oxford University Press.Google Scholar
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.Google Scholar
Raichle, M.E., & Snyder, A.Z. (2007). A default mode of brain function: A brief history of an evolving idea. Neuroimage, 37(4), 10831090. discussion 1097–1099. doi: S1053-8119(07)00130-9 [pii]10.1016/j.neuroimage.2007.02.041 Google Scholar
Rohlfing, T., Sullivan, E.V., & Pfefferbaum, A. (2006). Deformation-based brain morphometry to track the course of alcoholism: Differences between intra-subject and inter-subject analysis. Psychiatry Research: NeuroImaging, 146, 157170. doi: 16500088 Google Scholar
Rosenbloom, M.J., & Pfefferbaum, A. (2008). Magnetic resonance imaging of the living brain: Evidence for brain degeneration among alcoholics and recovery with abstinence. Alcohol Research & Health, 31(4), 362376.Google Scholar
Rosenbloom, M.J., Pfefferbaum, A., & Sullivan, E.V. (2004). Recovery of short-term memory and psychomotor speed but not postural stability with long-term sobriety in alcoholic women. Neuropsychology, 18(3), 589597.Google Scholar
Rourke, S.B., & Grant, I. (1999). The interactive effects of age and length of abstinence on the recovery of neuropsychological functioning in chronic male alcoholics: A 2-year follow-up study. Journal of the International Neuropsychological Society, 5(3), 234246.Google Scholar
Schuckit, M.A. (1985a). Ethanol-induced changes in body sway in men at high alcoholism risk. Archives of General Psychiatry, 42(4), 375379.Google Scholar
Schuckit, M.A. (1985b). Genetics and the risk for alcoholism. Journal of the American Medical Association, 253, 26142617.Google Scholar
Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., & Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 23492356. doi: 27/9/2349 [pii]10.1523/JNEUROSCI.5587–06.2007 Google Scholar
Segobin, S.H., Chetelat, G., Le Berre, A.P., Lannuzel, C., Boudehent, C., Vabret, F., & Pitel, A.L. (2014). Relationship between brain volumetric changes and interim drinking at six months in alcohol-dependent patients. Alcoholism, Clinical and Experimental Research, 38(3), 739748. doi: 10.1111/acer.12300 Google Scholar
Shear, P.K., Jernigan, T.L., & Butters, N. (1994). Volumetric magnetic resonance imaging quantification of longitudinal brain changes in abstinent alcoholics. Alcoholism, Clinical and Experimental Research, 18(1), 172176.Google Scholar
Squire, L.R. (1982). Comparisons between forms of amnesia: Some deficits are unique to Korsakoff’s syndrome. Journal of Experimental Psychology: Learning, Memory and Cognition, 8, 560571.Google Scholar
Squire, L.R., Amaral, D.G., & Press, G.A. (1990). Magnetic resonance imaging of the hippocampal formation and mammillary nuclei distinguish medial temporal lobe and diencephalic amnesia. Journal of Neuroscience, 10(9), 31063117.Google Scholar
Sridharan, D., Levitin, D.J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 1256912574. doi: 10.1073/pnas.0800005105 Google Scholar
Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203213. doi: 10.1111/j.1369-1600.2011.00418.x Google Scholar
Sullivan, E.V. (2003). Compromised pontocerebellar and cerebellothalamocortical systems: Speculations on their contributions to cognitive and motor impairment in nonamnesic alcoholism. Alcoholism, Clinical and Experimental Research, 27(9), 14091419.Google Scholar
Sullivan, E.V. (2012). War-related PTSD, blast injury, and anosognosia. Neuropsychology Review, 22(1), 12. doi: 10.1007/s11065-012-9188-z Google Scholar
Sullivan, E.V., Deshmukh, A., Desmond, J.E., Lim, K.O., & Pfefferbaum, A. (2000). Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syndrome:Relation to ataxia. Neuropsychology, 14(3), 341352.Google Scholar
Sullivan, E.V., Fama, R., Rosenbloom, M.J., & Pfefferbaum, A. (2002). A profile of neuropsychological deficits in alcoholic women. Neuropsychology, 16(1), 7483.Google Scholar
Sullivan, E.V., Lane, B., Deshmukh, A., Rosenbloom, M.J., Desmond, J.E., Lim, K.O., & Pfefferbaum, A. (1999). In vivo mammillary body volume deficits in amnesic and nonamnesic alcoholics. Alcoholism Clinical and Experimental Research, 23(10), 16291636. doi: 00000374-199910000-00010 [pii] Google Scholar
Sullivan, E.V., & Marsh, L. (2003). Hippocampal volume deficits in alcoholic Korsakoff’s syndrome. Neurology, 61(12), 17161719.Google Scholar
Sullivan, E.V., Marsh, L., Mathalon, D.H., Lim, K.O., & Pfefferbaum, A. (1995). Anterior hippocampal volume deficits in nonamnesic, aging chronic alcoholics. Alcoholism, Clinical and Experimental Research, 19(1), 110122.Google Scholar
Sullivan, E.V., Muller-Oehring, E.M., Pitel, A.L., Chanraud, S., Shankaranarayanan, A., Alsop, D.C., & Pfefferbaum, A. (2013). A selective insular perfusion deficit contributes to compromised salience network connectivity in recovering alcoholic men. Biological Psychiatry, 74(7), 547555. doi: S0006-3223(13)00223-0 [pii]10.1016/j.biopsych.2013.02.026 Google Scholar
Sullivan, E.V., & Pfefferbaum, A. (2001). Magnetic resonance relaxometry reveals central pontine abnormalities in clinically asymptomatic alcoholic men. Alcoholism, Clinical and Experimental Research, 25(8), 12061212.Google Scholar
Sullivan, E.V., & Pfefferbaum, A. (2005). Neurocircuitry in alcoholism: A substrate of disruption and repair. Psychopharmacology (Berl), 180, 583594.Google Scholar
Sullivan, E.V., & Pfefferbaum, A. (2009). Neuroimaging of the Wernicke-Korsakoff syndrome. Alcohol Alcohol, 44(2), 155165. doi: 10.1093/alcalc/agn103 Google Scholar
Sullivan, E.V., Rose, J., & Pfefferbaum, A. (2006). Effect of vision, touch and stance on cerebellar vermian-related sway and tremor: A quantitative physiological and MRI study. Cerebal Cortex, 16(8), 10771086.Google Scholar
Sullivan, E.V., Rose, J., & Pfefferbaum, A. (2010a). Mechanisms of postural control in alcoholic men and women: Biomechanical analysis of musculoskeletal coordination during quiet standing. Alcoholism, Clinical and Experimental Research, 34(3), 528537. doi: 10.1111/j.1530-0277.2009.01118.x Google Scholar
Sullivan, E.V., Rose, J., & Pfefferbaum, A. (2010b). Physiological and focal cerebellar substrates of abnormal postural sway and tremor in alcoholic women. Biological Psychiatry, 67(1), 4451. doi: 10.1016/j.biopsych.2009.08.008 Google Scholar
Sullivan, E.V., Rosenbloom, M.J., Lim, K.O., & Pfefferbaum, A. (2000). Longitudinal changes in cognition, gait, and balance in abstinent and relapsed alcoholic men: Relationships to changes in brain structure. Neuropsychology, 14(2), 178188.Google Scholar
Sullivan, E.V., Rosenbloom, M.J., & Pfefferbaum, A. (2000). Pattern of motor and cognitive deficits in detoxified alcoholic men. Alcoholism, Clinical and Experimental Research, 24(5), 611621.Google Scholar
Sullivan, E.V., & Tapert, S.F. (2013). Introduction to the special issue of Neuropsychology Review on cognitive enhancement and rehabilitation. Neuropsychology Review, 23(1), 1012. doi: 10.1007/s11065-013-9231-8 Google Scholar
Tapert, S.F., Brown, G.G., Kindermann, S.S., Cheung, E., Frank, L.R., & Brown, S.A. (2001). fMRI measurement of brain dysfunction in alcohol dependent young women. Alcoholism, Clinical and Experimental Research, 25(2), 236245.Google Scholar
Tarter, R.E. (1975). Psychological deficit in chronic alcoholics: A review. International Journal of the Addictions, 10(2), 327368.Google Scholar
Tarter, R.E., & Ryan, C. (1983). Neuropsychology of alcoholism. Etiology, phenomenology, process, and outcome. In M. Galanter Ed, Recent developments in alcoholism, (Vol. 1, pp. 449469). New York: Plenum.Google Scholar
Tivis, R., Beatty, W.W., Nixon, S.J., & Parsons, O.A. (1995). Patterns of cognitive impairment among alcoholics: Are there subtypes? Alcoholism, Clinical and Experimental Research, 19(2), 496500.Google Scholar
Ungerleider, L.G., & Mishkin, M. (1982). Two cortical visual systems. In D.J. Ingle, M.A. Goodale & R.J.W. Mansfield (Eds.), Analysis of visual behavior (pp. 549586). Cambridge, MA: The MIT Press.Google Scholar
Vanyukov, M.M., & Tarter, R.E. (2000). Genetic studies of substance abuse. Drug and Alcohol Dependence, 59(2), 101123.Google Scholar
Victor, M., Adams, R.D., & Collins, G.H. (1989). The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition (2nd ed.). Philadelphia: F.A. Davis Co.Google Scholar
Wang, G.Y., Demirakca, T., van Eijk, J., Frischknecht, U., Ruf, M., Ucar, S., & Ende, G. (2016). Longitudinal mapping of gyral and sulcal patterns of cortical thickness and brain volume regain during early alcohol abstinence. European Addiction Research, 22(2), 8089. doi: 10.1159/000438456 CrossRefGoogle ScholarPubMed
Wilson, B. (1939, 2014). Alcoholics anonymous. New York.Google Scholar
Yeh, P.H., Gazdzinski, S., Durazzo, T.C., Sjostrand, K., & Meyerhoff, D.J. (2007). Hierarchical linear modeling (HLM) of longitudinal brain structural and cognitive changes in alcohol-dependent individuals during sobriety. Drug and Alcohol Dependence, 91(2-3), 195204.Google Scholar
Yohman, J.R., Parsons, O.A., & Leber, W.R. (1985). Lack of recovery in male alcoholics’ neuropsychological performance one year after treatment. Alcoholism, Clinical and Experimental Research, 9(2), 114117.Google Scholar
Zahr, N.M., Pfefferbaum, A., & Sullivan, E.V. (2017). Perspectives on fronto-fugal circuitry from human imaging of alcohol use disorders. Neuropharmacology, 122, 189200. doi: 10.1016/j.neuropharm.2017.01.018 CrossRefGoogle ScholarPubMed