Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:53:16.013Z Has data issue: false hasContentIssue false

Context-dependency in the Cognitive Bias Task and Resting-state Functional Connectivity of the Dorsolateral Prefrontal Cortex

Published online by Cambridge University Press:  28 April 2020

Yana Panikratova*
Affiliation:
Laboratory of neuroimaging and multimodal analysis, Mental Health Research Center, Moscow, Russia
Olga Dobrushina
Affiliation:
International Institute of Psychosomatic Health, Moscow, Russia
Alexander Tomyshev
Affiliation:
Laboratory of neuroimaging and multimodal analysis, Mental Health Research Center, Moscow, Russia
Tatiana Akhutina
Affiliation:
Faculty of Psychology, Lomonosov Moscow State University, Moscow, Russia
Ekaterina Pechenkova
Affiliation:
Laboratory for Cognitive Research, National Research University Higher School of Economics, Moscow, Russia
Valentin Sinitsyn
Affiliation:
University Hospital, Lomonosov Moscow State University, Moscow, Russia
Roza Vlasova
Affiliation:
Department of Psychiatry, University of North Carolina, Chapel Hill, the USA
*
*Correspondence and reprint requests to: Yana R. Panikratova, 34 Kashirskoye shosse, Moscow, Russia. E-mail: panikratova@mail.ru

Abstract

Objective:

Goldberg, the author of the “novelty-routinization” framework, suggested a new pair of cognitive styles for agent-centered decision-making (DM), context-dependency/independency (CD/CI), quantified by the Cognitive Bias Task (CBT) and supposedly reflecting functional brain hemispheric specialization. To date, there are only three lesion and activation neuroimaging studies on the CBT with the largest sample of 12 participants. The present study is the first to analyze whole-brain functional connectivity (FC) of the dorsolateral prefrontal cortex (DLPFC), involved in contextual agent-centered DM.

Method:

We compared whole-brain resting-state FC of the DLPFC between CD (n = 24) and CI (n = 22) healthy participants. Additionally, we investigated associations between CD/CI and different aspects of executive functions.

Results:

CD participants had stronger positive FC of the DLPFC with motor and visual regions; FC of the left DLPFC was more extensive. CI participants had stronger positive FC of the left DLPFC with right prefrontal and parietal-occipital areas and of the left and right DLPFC with ipsilateral cerebellar hemispheres. No sex differences were found. CD/CI had nonlinear associations with working memory.

Conclusions:

The findings suggest that CD and CI are associated with different patterns of DLPFC FC. While CD is associated with FC between DLPFC and areas presumably involved in storing representations of current situation, CI is more likely to be associated with FC between DLPFC and right-lateralized associative regions, probably involved in the inhibition of the CD response and switching from processing of incoming perceptual information to creation of original response strategies.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aihara, M., Aoyagi, K., Goldberg, E., & Nakazawa, S. (2003). Age shifts frontal cortical control in a cognitive bias task from right to left: part I. Neuropsychological study. Brain and Development, 25(8), 555559. doi: 10.1016/S0387-7604(03)00064-0CrossRefGoogle Scholar
Allman, J.M., Tetreault, N.A., Hakeem, A.Y., Manaye, K.F., Semendeferi, K., Erwin, J.M., … Hof, P.R. (2010). The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure and Function, 214(5–6), 495517. doi: 10.1007/s00429-010-0254-0CrossRefGoogle ScholarPubMed
Aoyagi, K., Aihara, M., Goldberg, E., & Nakazawa, S. (2005). Lateralization of the frontal lobe functions elicited by a cognitive bias task is a fundamental process. Lesion study. Brain and Development, 27(6), 419423. doi: 10.1016/j.braindev.2004.11.006CrossRefGoogle ScholarPubMed
Barbey, A.K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 11951205. doi: 10.1016/j.cortex.2012.05.022CrossRefGoogle ScholarPubMed
Barkley, R.A. (2001). The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychology Review, 11(1), 129. doi: 10.1023/A:1009085417776CrossRefGoogle ScholarPubMed
Behzadi, Y., Restom, K., Liau, J., & Liu, T.T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. doi: 10.1016/j.neuroimage.2007.04.042CrossRefGoogle ScholarPubMed
Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. The Cerebellum, 6(3), 184192. doi: 10.1080/14734220601169707CrossRefGoogle ScholarPubMed
Berg, E.A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology. doi: 10.1080/00221309.1948.9918159CrossRefGoogle ScholarPubMed
Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719725. doi: 10.1109/34.865189CrossRefGoogle Scholar
Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., & Yeo, B.T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. American Journal of Physiology-Heart and Circulatory Physiology. doi: 10.1152/jn.00339.2011Google ScholarPubMed
Burgess, P.W., Dumontheil, I., & Gilbert, S.J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290298. doi: 10.1016/j.tics.2007.05.004CrossRefGoogle ScholarPubMed
Caspers, S., Amunts, K., & Zilles, K. (2012). Posterior parietal cortex: multimodal association cortex. In The Human Nervous System (pp. 10361055). Academic Press. doi: 10.1016/B978-0-12-374236-0.10028-8CrossRefGoogle Scholar
Cazalis, F., Valabrègue, R., Pélégrini-Issac, M., Asloun, S., Robbins, T.W., & Granon, S. (2003). Individual differences in prefrontal cortical activation on the Tower of London planning task: Implication for effortful processing. European Journal of Neuroscience. doi: 10.1046/j.1460-9568.2003.02633.xCrossRefGoogle Scholar
Cottone, J., Drucker, P., & Javier, R.A. (2007). Predictors of moral reasoning: components of executive functioning and aspects of religiosity. Journal for the Scientific Study of Religion, 46(1), 3753. doi: 10.1111/j.1468-5906.2007.00339.xCrossRefGoogle Scholar
Delis, D.C., Kaplan, E., & Kramer, J. (2001). The Delis-Kaplan Executive Function System: Examiner’s Manual. San Antonio: The Psychological Corporation.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi: 10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., & Petersen, S.E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99105. doi: 10.1016/j.tics.2008.01.001CrossRefGoogle ScholarPubMed
Fair, D.A., Dosenbach, N.U., Church, J.A., Cohen, A.L., Brahmbhatt, S., Miezin, F.M., … Schlaggar, B.L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104(33), 1350713512. doi: 10.1073/pnas.0705843104CrossRefGoogle Scholar
Fehr, T., Code, C., & Herrmann, M. (2007). Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation. Brain Research. doi: 10.1016/j.brainres.2007.07.043CrossRefGoogle ScholarPubMed
Filimonenko, Yu., & Timofeev, V. (1995). Manual For The Russian Version Of The Wechsler Adult Intelligence Scale, Adapted In 1995. Imaton, Saint Petersburg (in Russian).Google Scholar
Fraley, C., & Raftery, A.E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41(8), 578588.10.1093/comjnl/41.8.578CrossRefGoogle Scholar
Friston, K.J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1(1), 1336. doi: 10.1089/brain.2011.0008CrossRefGoogle ScholarPubMed
Gilbert, S.J., & Burgess, P.W. (2008). Executive function. Current Biology, 18(3), R110R114. doi: 10.1016/j.cub.2007.12.014CrossRefGoogle ScholarPubMed
Gold, J.M., Berman, K.F., Randolph, C., Goldberg, T.E., & Weinberger, D.R. (1996). PET validation of a novel prefrontal task: delayed response alternation. Neuropsychology, 10(1), 3. doi: 10.1037/0894-4105.10.1.3CrossRefGoogle Scholar
Goldberg, E., Harner, R., Lovell, M., Podell, K., & Riggio, S. (1994). Cognitive bias, functional cortical geometry, and the frontal lobes: laterality, sex, and handedness. Journal of Cognitive Neuroscience, 6(3), 276296. doi: 10.1162/jocn.1994.6.3.276CrossRefGoogle ScholarPubMed
Goldberg, E. (2009). The New Executive Brain: Frontal Lobes in A Complex World. New York, the USA: Oxford University Press.Google Scholar
Goldberg, E. (2018). Creativity: The Human Brain in The Age of Innovation. New York, the USA: Oxford University Press.Google Scholar
Goldberg, E., & Bougakov, D. (2005). Neuropsychologic assessment of frontal lobe dysfunction. Psychiatric Clinics of North America. doi: 10.1016/j.psc.2005.05.005CrossRefGoogle ScholarPubMed
Goldberg, E., & Costa, L.D. (1981). Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14(1), 144173. doi: 10.1016/0093-934X(81)90072-9CrossRefGoogle ScholarPubMed
Goldberg, E., Funk, B.A., & Podell, K. (2012). How the brain deals with novelty and ambiguity: implications for neuroaesthetics. Rendiconti Lincei, 23(3), 227238. doi: 10.1007/s12210-012-0186-0CrossRefGoogle Scholar
Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C.F., Menon, V., & Greicius, M.D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29(26), 85868594. doi: 10.1523/JNEUROSCI.1868-09.2009CrossRefGoogle ScholarPubMed
Hartigan, J.A., & Hartigan, P.M. (1985). The Dip Test of Unimodality. The Annals of Statistics, 13(1), 7084. doi: 10.1214/aos/1176346577CrossRefGoogle Scholar
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287(5456), 12691272. doi: 10.1126/science.287.5456.1269CrossRefGoogle ScholarPubMed
Hutsler, J., & Galuske, R.A. (2003). Hemispheric asymmetries in cerebral cortical networks. Trends in Neurosciences, 26(8), 429435. doi: 10.1016/S0166-2236(03)00198-XCrossRefGoogle ScholarPubMed
Iturria-Medina, Y., Pérez Fernández, A., Morris, D.M., Canales-Rodríguez, E.J., Haroon, H.A., García Pentón, L., … Melie-García, L. (2010). Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cerebral Cortex, 21(1), 5667. doi: 10.1093/cercor/bhq058CrossRefGoogle ScholarPubMed
Kessels, R.P.C., Van Den Berg, E., Ruis, C., & Brands, A.M.A. (2008). The backward span of the corsi block-tapping task and its association with the WAIS-III digit span. Assessment. doi: 10.1177/1073191108315611CrossRefGoogle ScholarPubMed
Lai, V.T., van Dam, W., Conant, L.L., Binder, J.R., & Desai, R.H. (2015). Familiarity differentially affects right hemisphere contributions to processing metaphors and literals. Frontiers in Human Neuroscience, 9, 44. doi: 10.3389/fnhum.2015.00044CrossRefGoogle ScholarPubMed
Lee, M.H., Smyser, C.D., & Shimony, J.S. (2013). Resting-state fMRI: a review of methods and clinical applications. American Journal of Neuroradiology. doi: 10.3174/ajnr.A3263CrossRefGoogle ScholarPubMed
Luria, A.R. (1980). Higher Cortical Functions in Man and their Disturbances in Local Brain Lesions. Boston, MA: Springer. doi: 10.1007/978-1-4615-8579-4CrossRefGoogle Scholar
Luria, A.R., & Tsvetkova, L.S. (1966). Neuropsychological Analysis of Problem Solving. Prosveshenie, Moscow (in Russian).Google Scholar
Marek, S., Siegel, J.S., Gordon, E.M., Raut, R.V., Gratton, C., Newbold, D.J., … Zheng, A. (2018). Spatial and temporal organization of the individual human cerebellum. Neuron, 100(4), 977993. doi: 10.1016/j.neuron.2018.10.010CrossRefGoogle ScholarPubMed
Martin, A., Wiggs, C.L., & Weisberg, J. (1997). Modulation of human medial temporal lobe activity by form, meaning, and experience. Hippocampus, 7(6), 587593. doi: 10.1002/(SICI)1098-1063(1997)7:6<587::AID-HIPO1>3.0.CO;2-C3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Mueller, S.T., & Piper, B.J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL test battery. Journal of Neuroscience Methods. doi: 10.1016/j.jneumeth.2013.10.024CrossRefGoogle ScholarPubMed
Nieto, M., Romero, D., Ros, L., Zabala, C., Martínez, M., Ricarte, J.J., … Latorre, J.M. (2019). Differences in coping strategies between young and older adults: the role of executive functions. The International Journal of Aging and Human Development, 0091415018822040. doi: 10.1177/0091415018822040Google Scholar
Nieto-Castañón, A., & Fedorenko, E. (2012). Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. NeuroImage. doi: 10.1016/j.neuroimage.2012.06.065CrossRefGoogle ScholarPubMed
Owen, A.M., McMillan, K.M., Laird, A.R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping. doi: 10.1002/hbm.20131CrossRefGoogle ScholarPubMed
Pechenkova, E.V., Vlasova, R.M., Rumshiskaya, A.D., Mershina, E.A., & Sinitsyn, V.E. (2014). Brain mapping of regions related to mental arithmetic using functional magnetic resonance imaging. In Congress of Russian Association of Radiologists. Moscow.Google Scholar
Phillips, L.H. (1999). The role of memory in the Tower of London task. Memory. doi: 10.1080/741944066CrossRefGoogle ScholarPubMed
Pineda, D., Ardila, A., Rosselli, M.N., Cadavid, C., Mancheno, S., & Mejia, S. (1998). Executive dysfunctions in children with attention deficit hyperactivity disorder. International Journal of Neuroscience, 96(3–4), 177196.10.3109/00207459808986466CrossRefGoogle ScholarPubMed
Podell, K., Lovell, M., Zimmerman, M., & Goldberg, E. (1995). The cognitive bias task and lateralized frontal lobe functions in males. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(4), 491501. doi: 10.1176/jnp.7.4.491Google ScholarPubMed
Reineberg, A.E., Andrews-Hanna, J.R., Depue, B.E., Friedman, N.P., & Banich, M.T. (2015). Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage, 104, 6978. doi: 10.1016/j.neuroimage.2014.09.045CrossRefGoogle ScholarPubMed
Rickard, T.C., Romero, S.G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: an fMRI study. Neuropsychologia. doi: 10.1016/S0028-3932(99)00068-8CrossRefGoogle Scholar
Schmitz, T.W., & Johnson, S.C. (2006). Self-appraisal decisions evoke dissociated dorsal—ventral aMPFC networks. Neuroimage, 30(3), 10501058. doi: 10.1016/j.neuroimage.2005.10.030CrossRefGoogle ScholarPubMed
Scrucca, L., Fop, M., Murphy, T.B., & Raftery, A.E. (2016). Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289. doi: 10.32614/rj-2016-021CrossRefGoogle ScholarPubMed
Semkovska, M., Bédard, M.A., Godbout, L., Limoge, F., & Stip, E. (2004). Assessment of executive dysfunction during activities of daily living in schizophrenia. Schizophrenia Research, 69(2–3), 289300. doi: 10.1016/j.schres.2003.07.005CrossRefGoogle Scholar
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. doi: 10.1098/rstb.1982.0082Google ScholarPubMed
Shimoyama, H., Aihara, M., Fukuyama, H., Hashikawa, K., Aoyagi, K., Goldberg, E., & Nakazawa, S. (2004). Context-dependent reasoning in a cognitive bias task: part II. SPECT activation study. Brain and Development, 26(1), 3742. doi: 10.1016/S0387-7604(03)00092-5CrossRefGoogle Scholar
Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M.D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158165. doi: 10.1093/cercor/bhr099CrossRefGoogle ScholarPubMed
Smith, S.M. (2012). The future of FMRI connectivity. Neuroimage, 62(2), 12571266. doi: 10.1016/j.neuroimage.2012.01.022CrossRefGoogle ScholarPubMed
Sokolov, A.A., Miall, R.C., & Ivry, R.B. (2017). The cerebellum: adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313332. doi: 10.1016/j.tics.2017.02.005CrossRefGoogle ScholarPubMed
Stratta, P., Daneluzzo, E., Bustini, M., Prosperini, P., & Rossi, A. (2000). The cognitive bias task (CBT) in healthy controls: a replication study. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13(4), 279285.Google ScholarPubMed
Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., … Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia. doi: 10.1016/S0028-3932(99)00093-7CrossRefGoogle ScholarPubMed
Szczepanski, S.M., & Knight, R.T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron. doi: 10.1016/j.neuron.2014.08.011CrossRefGoogle ScholarPubMed
Tanji, J., & Hoshi, E. (2008). Role of the lateral prefrontal cortex in executive behavioral control. Physiological Reviews. doi: 10.1152/physrev.00014.2007CrossRefGoogle ScholarPubMed
Tulviste, J., Goldberg, E., Podell, K., & Bachmann, T. (2016). Effects of repetitive transcranial magnetic stimulation on non-veridical decision making. Acta Neurobiologiae Experimentalis, 76, 182191.CrossRefGoogle ScholarPubMed
Unterrainer, J.M., Rahm, B., Kaller, C.P., Ruff, C.C., Spreer, J., Krause, B.J., … Halsband, U. (2004). When planning fails: Individual differences and error-related brain activity in problem solving. Cerebral Cortex. doi: 10.1093/cercor/bhh100CrossRefGoogle ScholarPubMed
Vasserman, L.I., Dorofeeva, S.A., & Meerson, Y.A. (1997). Methods of Neuropsychological Diagnostics. Practice Manual. Pravda, Saint Petersburg (in Russian).Google Scholar
Walter, E., & Dassonville, P. (2011). Activation in a frontoparietal cortical network underlies individual differences in the performance of an embedded figures task. PloS One, 6(7), e20742. doi: 10.1371/journal.pone.0020742CrossRefGoogle Scholar
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. doi: 10.1089/brain.2012.0073CrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., & Wager, T.D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods. doi: 10.1038/nmeth.1635CrossRefGoogle ScholarPubMed